Answer:
Neither they get the same amount
Step-by-step explanation:
Remark
The number of faces reaching out in the 3rd dimension of the pyramid = the number of edges on the base.
Givens
Number of edges (or sides on the base)= e
Number of faces = f
Formula
F = e + 1 Don't forget that the base is also a face.
Answer:
The equivalent expression for the given expression
is
![4x^{3} y^{2}(\sqrt[3]{4xy} )](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%20%29)
Step-by-step explanation:
Given:
![\sqrt[3]{256x^{10}y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D)
Solution:
We will see first what is Cube rooting.
![\sqrt[3]{x^{3}} = x](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E%7B3%7D%7D%20%3D%20x)
Law of Indices

Now, applying above property we get
![\sqrt[3]{256x^{10}y^{7} }=\sqrt[3]{(4^{3}\times 4\times (x^{3})^{3}\times x\times (y^{2})^{3}\times y )} \\\\\textrm{Cube Rooting we get}\\\sqrt[3]{256x^{10}y^{7} }= 4\times x^{3}\times y^{2}(\sqrt[3]{4xy}) \\\\\sqrt[3]{256x^{10}y^{7} }= 4x^{3}y^{2}(\sqrt[3]{4xy})](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%5Csqrt%5B3%5D%7B%284%5E%7B3%7D%5Ctimes%204%5Ctimes%20%28x%5E%7B3%7D%29%5E%7B3%7D%5Ctimes%20x%5Ctimes%20%28y%5E%7B2%7D%29%5E%7B3%7D%5Ctimes%20y%20%20%20%29%7D%20%5C%5C%5C%5C%5Ctextrm%7BCube%20Rooting%20we%20get%7D%5C%5C%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%204%5Ctimes%20x%5E%7B3%7D%5Ctimes%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%29%20%5C%5C%5C%5C%5Csqrt%5B3%5D%7B256x%5E%7B10%7Dy%5E%7B7%7D%20%7D%3D%204x%5E%7B3%7Dy%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%29)
∴ The equivalent expression for the given expression
is
![4x^{3} y^{2}(\sqrt[3]{4xy} )](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%28%5Csqrt%5B3%5D%7B4xy%7D%20%29)
Answer:
16.9
Step-by-step explanation:
.......ur welcome..........
40% of 39.99=15.95
6% of 15.95= 0.95
15.95 × 0.95=16.9
Answer:x = 7
Step-by-step explanation:
Similar figures have sides that are proportional. Setting up a proportion for the sides of the figures will help solve for 'x':
Cross-multiply: 3(x + 1) = 6(x - 3)
Distribute: 3x + 3 = 6x - 18
Combine like terms: 21 = 3x
Solve for 'x': x = 7