Answer: Option (c) is the correct answer.
Explanation:
Vapor pressure is defined as the pressure exerted by vapors or gas on the surface of a liquid.
When we increase the temperature of a liquid substance then there will occur an increase kinetic energy of the molecules. As a result, they will move readily from one place to another.
Hence, liquid state of a substance will change into vapor state of the substance. This means that an increase in temperature will lead to an increase in vapor pressure of the substance.
Thus, we can conclude that you can increase the vapor pressure of a liquid by increasing temperature.
Answer:
(1) The orbits are ellipses, with focal points ƒ1 and ƒ2 for the first planet and ƒ1 and ƒ3 for the second planet. The Sun is placed in focal point ƒ1.
(2) The two shaded sectors A1 and A2 have the same surface area and the time for planet 1 to cover segment A1 is equal to the time to cover segment A2.
(3) The total orbit times for planet 1 and planet 2 have a ratio a13/2 : a23/2
Answer:
Explanation:
Given:
U1 = 1.6 m/s
U2 = -1.1 m/s
M1 = 1850 kg
M2 = 1400 kg
V1 = 0.27 m/s
Using momentum- collision equation,
M1U1 + M2U2 = M1V1 + M2V2
1850 × 1.6 - 1400 × 1.1 = 1850 × 0.27 + 1400 × V2
1420 = 499.5 + 1400V2
V2 = 0.6575 m/s
B.
KE = 1/2 × MV^2
KEa1 + KEa2 = KEb1 + KEb2
Delta KE = KE2 - KE1
KEa1 = 2368 J
KEb1 = 847 J
KEa2 = 67.433 J
KEb2 = 302.6 J
KE1 = KEa1 + KEb1
= 3215 J
KE2 = 370.033 J
Delta KE = -2845 J.
There is a total of 6 half lives that need to take place.
ONE HALF LIFE = 200
TWO HALF LIFES = 100
THREE HALF LIFES = 50
FOUR HALF LIFES = 25
FIVE HALF LIFES = 12.5
SIX HALF LIFES = 6.25
The answer is 6.25g