Answer:
Option D) $275
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = $235
Standard Deviation, σ = $20
We are given that the distribution of amount of money spent by students is a bell shaped distribution that is a normal distribution.
Formula:

We have to find the value of x such that the probability is 0.975
Calculation the value from standard normal z table, we have,

Approximately 97.5% of the students spent below $275 on textbook.
Answer:
yes
Step-by-step explanation:
Answer: -2v-20
Step-by-step explanation: -2 times v is -2v
and -10 times -2 is -20.
Top:
x / (x + 1) - 1 / x
= [x^2 - (x +1)] / x(x+1)
= (x^2 - x - 1 ) / x (x+1)
Bottom:
x / (x + 1) + 1 / x
= [x^2 + (x +1)] / x(x+1)
= (x^2 + x + 1 ) / x (x+1)
Now you have:
(x^2 - x - 1 ) / x (x+1)
----------------------------
(x^2 + x + 1 ) / x (x+1)
= (x^2 - x - 1 ) / x (x+1) * x (x+1) / (x^2 + x + 1 )
= (x^2 - x - 1 ) /(x^2 + x + 1 )
Answer:
x^2 - x - 1
---------------------
x^2 + x + 1
I only know what in the picture which is the letter A