Answer:
Negative
Step-by-step explanation:
It would be -1.3. Because you know? You add?
Draw a rectangle with diagonal 5 in. Inside this rect. are 2 acute triangles of hypotenuse 5. Note that 3^2 + 4^2 = 5^2; thus the width of the rect. is 3 and the length is 4, with the result that the hypo. is sqrt(3^2+4^2), as expected.
Answer:
3. x+8
4. 6y
5. 1/2m
6. 50/h
7. 7-n
8. 15+x
9. 2t/12
10. p² -3
11. 2k-7
12. 3(w+5)
13. C
14. The error was it was written that you would subtract the pages read by pages in the article which is incorrect. You would subtract pages total (5) by pages read (p). So it is 5-p.
15. 4v
16. 16/p
17. 2.97/p
18. 20+j
19. 7-d
20. m/60
21. y/12
22. unit rate-8
23. unit rate-1.5
24. unit rate-2.4
25. unit rate-6.8
26. C
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:

P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,

0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000