Answer:
Suppose you earned extra money by having a part-time job. You open up a bank account in order to save your money. Your body acts similar to a bank account—you can “deposit” and “store” energy.
Step-by-step explanation:
Answer:
a = 3.9
Step-by-step explanation:
Isolate the varible by dividing each side by factors that don't contain the variable.
Answer: she was not correct, she messed up the equation.
Answer:
Part A = 10in = 35 ft
= 20 = 70 ft
Part B =
$ 178.5
Step-by-step explanation:
Answer with explanation:
The given differential equation is
y" -y'+y=2 sin 3x------(1)
Let, y'=z
y"=z'
![\frac{dy}{dx}=z\\\\d y=zdx\\\\y=z x](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%3Dz%5C%5C%5C%5Cd%20y%3Dzdx%5C%5C%5C%5Cy%3Dz%20x)
Substituting the value of , y, y' and y" in equation (1)
z'-z+zx=2 sin 3 x
z'+z(x-1)=2 sin 3 x-----------(1)
This is a type of linear differential equation.
Integrating factor
![=e^{\int (x-1) dx}\\\\=e^{\frac{x^2}{2}-x}](https://tex.z-dn.net/?f=%3De%5E%7B%5Cint%20%28x-1%29%20dx%7D%5C%5C%5C%5C%3De%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D-x%7D)
Multiplying both sides of equation (1) by integrating factor and integrating we get
![\rightarrow z\times e^{\frac{x^2}{2}-x}=\int 2 sin 3 x \times e^{\frac{x^2}{2}-x} dx=I](https://tex.z-dn.net/?f=%5Crightarrow%20z%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D-x%7D%3D%5Cint%202%20sin%203%20x%20%5Ctimes%20e%5E%7B%5Cfrac%7Bx%5E2%7D%7B2%7D-x%7D%20dx%3DI)
![I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx -\int \frac{2\cos 3x e^{\fra{x^2}{2}-x}}{3} dx\\\\I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx-\frac{2I}{3}\\\\\frac{5I}{3}=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{3}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{3} dx\\\\I=\frac{-2\cos 3x e^{\fra{x^2}{2}-x}}{5}+\int\frac{2x\cos 3x e^{\fra{x^2}{2}-x}}{5} dx](https://tex.z-dn.net/?f=I%3D%5Cfrac%7B-2%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%2B%5Cint%5Cfrac%7B2x%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%20dx%20-%5Cint%20%5Cfrac%7B2%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%20dx%5C%5C%5C%5CI%3D%5Cfrac%7B-2%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%2B%5Cint%5Cfrac%7B2x%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%20dx-%5Cfrac%7B2I%7D%7B3%7D%5C%5C%5C%5C%5Cfrac%7B5I%7D%7B3%7D%3D%5Cfrac%7B-2%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%2B%5Cint%5Cfrac%7B2x%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B3%7D%20dx%5C%5C%5C%5CI%3D%5Cfrac%7B-2%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B5%7D%2B%5Cint%5Cfrac%7B2x%5Ccos%203x%20e%5E%7B%5Cfra%7Bx%5E2%7D%7B2%7D-x%7D%7D%7B5%7D%20dx)