The Lewis structures in which there are no formal charges is the most stable. Hence, structure (b) is the more stable form of FNO2.
<h3>Lewis structure</h3>
The question is incomplete but I will try to answer you as much as I can. Now the equation is missing hence we can't numerically caculate the enthalpy chnage of the reaction from bond energies. However, we can do this using the formula; Σbond energy of reactants - bond energy of products.
Concerning the Lewis structures of FNO2, the most stable structure is structure (b) as shown in the image attached where the atoms have no formal charges.
Learn more about Lewis structure:brainly.com/question/4144781
Answer: " <span>1.8 * 10²⁴ molecules of O₂ " .
________________________________________</span>
3.0 moles O₂ * (6.02 * 10²³ molecules O₂ / 1 mol O₂) =
[ (3.0) *(6.02 * 10²³) ] molecules O₂
= 1.806 * 10²⁴ ; round to 2 significant figures.
= 1.8 * 10²⁴ molecules of O₂ .
______________________________________________________
<span>Soft drink and beer cans. If aluminum were not malleable, these couldn't be made</span>
Answer:
237.8L of water would need to be added.
Explanation:
The first thing to do is to identify that the equation to be used is M1V1=M2V2. (This equation works because it turns everything into moles which can then be compared).
Then figure out what information you have and what is being found. In this case:
M1 = 54.7 M
V1 = 1092 mL = 1.092 L
M2 = 0.25 M
V2 = unknown
Then solve the equation for whatever you are trying to find.
M1V1=M2V2
V2=M1V1/M2
Now you need to plug everything in.
V2=(54.7M*1.091L)/0.25M
V2=238.93L
That means that the solution needs a volume of 238.7L to gain a molarity of 0.25M but the starting solution already had a volume of 1.092 L meaning that to find the amount of solvent that needs to be added you just subtract the starting volume by the volume that the solution needs to be.
238.93L - 1.091L = 237.8L
Therefore the answer is that 237.8L needs to be added to a 1.092L 54.7M NaCl solution to make the concentration 0.25M.
I hope this helps. Let me know if anything is unclear.
Answer: an ice pack getting cold (due to ammonium nitrate dissolving in water inside the pack)
Explanation:
Endothermic reactions: These are the reactions in which energy is required in the reaction. The energy of the products are more than the energy of the reactants.
Exothermic reactions: These are the reactions in which energy is released in the reaction. The energy of the products is less than the energy of the reactants.
a) water droplets condensing on a soda can on a hot summer day : As the gaseous molecules are changing into liquid phase, energy is released and is exothermic
b) an ice pack getting cold (due to ammonium nitrate dissolving in water inside the pack) : As the temperature is decreasing , energy is absorbed by the surroundings and thus is endothermic
c) thermite reaction between iron(III) oxide and aluminium (spectacular flames are observed) : As flames are produced, the energy is released and thus is exothermic
d) freezing water to make ice cubes : As the liquid molecules are changing into solid phase, energy is released and is exothermic