Answer:
See explanation
Explanation:
a) The magnitude of intermolecular forces in compounds affects the boiling points of the compound. Neon has London dispersion forces as the only intermolecular forces operating in the substance while HF has dipole dipole interaction and strong hydrogen bonds operating in the molecule hence HF exhibits a much higher boiling point than Ne though they have similar molecular masses.
b) The boiling points of the halogen halides are much higher than that of the noble gases because the halogen halides have much higher molecular masses and stronger intermolecular forces between molecules compared to the noble gases.
Also, the change in boiling point of the hydrogen halides is much more marked(decreases rapidly) due to decrease in the magnitude of hydrogen bonding from HF to HI. The boiling point of the noble gases increases rapidly down the group as the molecular mass of the gases increases.
A, They Lower The Activation Energy.
The oxidation state, sometimes referred to as oxidation number, describes the degree of oxidation of an atom in a chemical compound.
<u>Explanation:</u>
The oxidation number of an atom is the charge that atom would have if the compound was composed of ions. 1. The oxidation number of an atom is zero in a neutral substance that contains atoms of only one element. The oxidation number of simple ions is equal to the charge on the ion.
The oxidation number of a mono atomic ion equals the charge of the ion. The oxidation number of H is +1, but it is -1 in when combined with less electro negative elements. The oxidation number of O in compounds is usually -2, but it is -1 in peroxides. The oxidation number of a Group 1 element in a compound is +1.
First, 55 g of Hg is 3.65 moles because one mole of Hg has a molar mass of 200.59
Then, the mole ratio of Hg to CaO is 8:4 or 2:1. SO we divide 3.65 by 2 to get 1.82 moles of CaO
This is the same as 102.06 grams because one mole of CaO has a molar mass of 56.0774
Hope this helps!