Answer:
There are (63) combinations. The notation means "six choose three". Out of six items (flavors) choose three.
(nk)=n!k!(n−k)!.
(63)=6!3!3!.
Think of it this way. There are 6 ways to choose a flavor. Once you choose, there are 5 ways to choose the next. After that, there are 4 flavors left. which is 6!/3!=6⋅5⋅4⋅3⋅2⋅13⋅2⋅1=6⋅5⋅4=120.
But, you could have chosen {chocolate,vanilla,strawberry} and you get the same combination as {vanilla, strawberry, chocolate} so we have to divide by 3!=3⋅2⋅1=6 to account for the order of choosing.
So the number of combinations of flavors is (63)=1206=20.
<h3>Mark me a brainlist</h3>
Cards are drawn, one at a time, from a standard deck; each card is replaced before the next one is drawn. Let X be the number of draws necessary to get an ace. Find E(X) is given in the following way
Step-by-step explanation:
- From a standard deck of cards, one card is drawn. What is the probability that the card is black and a
jack? P(Black and Jack) P(Black) = 26/52 or ½ , P(Jack) is 4/52 or 1/13 so P(Black and Jack) = ½ * 1/13 = 1/26
- A standard deck of cards is shuffled and one card is drawn. Find the probability that the card is a queen
or an ace.
P(Q or A) = P(Q) = 4/52 or 1/13 + P(A) = 4/52 or 1/13 = 1/13 + 1/13 = 2/13
- WITHOUT REPLACEMENT: If you draw two cards from the deck without replacement, what is the probability that they will both be aces?
P(AA) = (4/52)(3/51) = 1/221.
- WITHOUT REPLACEMENT: What is the probability that the second card will be an ace if the first card is a king?
P(A|K) = 4/51 since there are four aces in the deck but only 51 cards left after the king has been removed.
- WITH REPLACEMENT: Find the probability of drawing three queens in a row, with replacement. We pick a card, write down what it is, then put it back in the deck and draw again. To find the P(QQQ), we find the
probability of drawing the first queen which is 4/52.
- The probability of drawing the second queen is also 4/52 and the third is 4/52.
- We multiply these three individual probabilities together to get P(QQQ) =
- P(Q)P(Q)P(Q) = (4/52)(4/52)(4/52) = .00004 which is very small but not impossible.
- Probability of getting a royal flush = P(10 and Jack and Queen and King and Ace of the same suit)
Answer:
-4,2
Step-by-step explanation:
(x-2) (x+4)=0
x-2=0
x=2
x+4=0
x= -4
Answer:
32 people came in blue cars and 6 people came in red cars
Step-by-step explanation:
Technically, all 48 people came in red or blue cars, but I'm assuming that's not what the question is asking.
To find how many people came in blue cars, we do 2/3*48 which is equal to 32 people.
To find how many people came in red cars, we do 1/8*48 which is equal to 6 people.
B >= 5,000 because it mentioned "at least" so its equal and more than 5,000