1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgesh-ka [11]
2 years ago
12

A rectangular container measuring 20 inches long by 16 inches wide by 12 inches tall is filled to its brim with water. If 850 cu

bic inches of water are drained from the container, then the new height of the water is approximately (Blank) inches. If necessary, round to the nearest tenth.
Mathematics
1 answer:
makkiz [27]2 years ago
5 0

The new height of the water is = 9.34 inches (approx)

Step-by-step explanation:

Given, a rectangular container measuring 20 inches long by 16 inches wide by 12 inches tall is filled to its brim with water.

Let the new height of water level be x inches.

The volume of the container = (20×16×12) cubic inches

                                               =3840  cubic inches

According to the problem,

3840 - (20×16×x) = 850

⇔3840 -320x = 850

⇔-320x =850-3840

⇔-320 x = -2990

\Leftrightarrow x =\frac{2990}{320}

⇔x = 9.34 inches

The new height of the water is = 9.34 inches (approx)

You might be interested in
Help! What is the average rate of change of f(x)=x^2+3x+6 over the interval -3 less-than-or-equal-to x less-than-or-equal-to 3?
Makovka662 [10]

Answer:

The average rate of change of the function over the interval is 5.

Step-by-step explanation:

Average rate of change of a function:

The average rate of change of a function f(x) over an interval [a,b] is given by:

A = \frac{f(b)-f(a)}{b-a}

Interval -3 less-than-or-equal-to x less-than-or-equal-to 3

This means that a = -3, b = 3

f(x) = x^2 + 3x + 6

So

f(b) = f(3) = (3)^2 + 3(3) + 6 = 9 + 9 + 6 = 24

f(a) = f(-3) = (-3)^2 + 3(-3) + 6 = 9 - 9 + 6 = 6

Average rate of change

A = \frac{f(b)-f(a)}{b-a} = \frac{24+6}{3-(-3)} = \frac{30}{6} = 5

The average rate of change of the function over the interval is 5.

8 0
3 years ago
What is the simple interest of a note that has a face value of $12,000, a rate of 8%, and a term of 1 year?
Tju [1.3M]

Solution:

Given:

\begin{gathered} P=\text{ \$}12,000 \\ R=8\text{ \%} \\ T=1year \end{gathered}

Using the simple interest formula,

\begin{gathered} I=\frac{PTR}{100} \\ I=\frac{12000\times1\times8}{100} \\ I=\text{ \$}960 \end{gathered}

Therefore, the simple interest is $960.

8 0
1 year ago
What is the circumference of a circle with a radius of 2.5 meters?
Hitman42 [59]

Answer:

15.71m

Step-by-step explanation:

circumference of a circle = 2πr

where r = 2.5m

where π = 3.142

we have,

2*3.142*2.5 = 15.71m

therefore the circumference of a circle with a radius 2.5m = 15.71 m

8 0
3 years ago
Find the derivative.
krek1111 [17]

Answer:

\displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

General Formulas and Concepts:

<u>Algebra I</u>

Terms/Coefficients

  • Expanding/Factoring

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle f(x) = \frac{\sqrt{x}}{e^x}

<u>Step 2: Differentiate</u>

  1. Derivative Rule [Quotient Rule]:                                                                   \displaystyle f'(x) = \frac{(\sqrt{x})'e^x - \sqrt{x}(e^x)'}{(e^x)^2}
  2. Basic Power Rule:                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}(e^x)'}{(e^x)^2}
  3. Exponential Differentiation:                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{(e^x)^2}
  4. Simplify:                                                                                                         \displaystyle f'(x) = \frac{\frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x}{e^{2x}}
  5. Rewrite:                                                                                                         \displaystyle f'(x) = \bigg( \frac{e^x}{2\sqrt{x}} - \sqrt{x}e^x \bigg) e^{-2x}
  6. Factor:                                                                                                           \displaystyle f'(x) = \bigg( \frac{1}{2\sqrt{x}} - \sqrt{x} \bigg)e^\big{-x}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

7 0
2 years ago
Open the picture, help me and get 10 points
Hitman42 [59]
13 feet wide.
156/12=13
Brainliest plz
4 0
3 years ago
Other questions:
  • 9x-4 (x-3)+72<br> Find X<br> A. 6<br> B. 12<br> C. 17<br> D. 19
    11·1 answer
  • Given the equation 4x - 3y = 12
    8·1 answer
  • A parking garage charges $2 to enter the garage and $1.50 an hour to park.
    5·2 answers
  • What is the equation of a line with a slope of -1 and a y-intercept of -5​
    14·1 answer
  • What is the slope of the line passing through the points (1, -5) and (4, 1)?
    10·2 answers
  • 8686 rounded to the nearest non zero
    9·2 answers
  • -8≤2/5(k-2)<br><br><br><br> How do i show my work<br> will give BRAINLEST
    13·1 answer
  • PLSASE HELP DUE TODAY WILL MARK YOU!!!
    14·1 answer
  • 6)
    14·1 answer
  • Can someone plss help ASAP
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!