The angles remain the same. If you equally increase the lengths of the sides, the interior and exterior angles will not change. Both of them are similar to the original sign.
Step-by-step explanation:
- Number of red = 2
- Number of blue = 5
- Number of green = 3
- total number of marbles = 10
<h3>
probability of not choosing a red marble = 1--choosing a red marble.</h3>
<u>Because</u><u> </u><u>probability</u><u> </u><u>is</u><u> </u><u>always</u><u> </u><u>one</u><u>(</u><u>1</u><u>)</u><u>.</u>
<em>Probability</em><em> </em><em>=</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>Is</em><em> </em><em>the</em><em> </em><em>probability</em><em> </em><em>of</em><em> </em><em>not</em><em> </em><em>choosing</em><em> </em><em>a</em><em> </em><em>red</em><em> </em><em>marble</em><em>.</em>
Here are a couple I found:
<u>Similarities</u>:
- They have the same y-intercept of (0,5).
- They are both in slope-intercept form.
<u>Differences</u>:
- The line of y = -13x + 5 "falls" from left to right. The line of y = 2x + 5 "rises" from left to right.
- They have different x-intercepts. (y = 2x + 5 intersects (-
, 0) while y = -13x + 5 intersects at (
, 0)
<u></u>
<u>Explanation</u>:
Slope-intercept form is y = mx + b, and by looking at the equations, they both already fit that format, with m as their slope and b as their y-intercept. Also, since they both have a 5 as that "b," their y-intercepts are the same: (0,5).
As for differences, we can see that the coefficient in place of that "m" is positive in y = <u>2x</u> + 5 and negative in y = <u>-13x</u> + 5. Therefore, one line would rise due to their slope being positive and one would fall due to their slope being negative. They also have two different x-intercepts, which we can calculate by substituting 0 in place of the y, then isolating x.
This is not enough info to determine the length of teds pencil