In trigonometric ratios, the cos (x) = adjacent over hypotenuse.
Therefore, in the diagram, cos (55°) = s/q
To isolate q, divide both sides by s
cos (55°) / s = 1/ q
Then flip both numerators and denominators (raise both sides to the power of -1)
q = s / cos (55°)
Answer is D
If the roots are r1,r2,r3, the facotred polynomail looksl ike this
f(x)=(x-r1)(x-r2)(x-r3)
given
roots 4,2i and -2i
f(x)=(x-4)(x-2i)(x-(-2i))
f(x)=(x-4)(x-2i)(x+2i)
expand
f(x)=x³-4x²+4x-16
3rd option
Answer:
if you need the formula, it is pq/2
Step-by-step explanation:
the "p" is a diagonal of the rhombus
the "q" is the other diagonal of the rhombus
you multiply p and q
the you divide that number by 2
then, you have found the area
Id say its between a and c. your best bet would be a since you have to plug in 9 for y.