Answer:
Step-by-step explanation:
Since the results for the standardized test are normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - µ)/σ
Where
x = test reults
µ = mean score
σ = standard deviation
From the information given,
µ = 1700 points
σ = 75 points
We want to the probability that a student will score more than 1700 points. This is expressed as
P(x > 1700) = 1 - P(x ≤ 1700)
For x = 1700,
z = (1700 - 1700)/75 = 0/75 = 0
Looking at the normal distribution table, the probability corresponding to the z score is 0.5
P(x > 1700) = 1 - 0.5 = 0.5
Answer:
(-4, -2)
Step-by-step explanation:
A = (-1, 2)
Add (-3, -4) to that and you get ...
A' = (-1-3, 2-4) = (-4, -2) . . . . matches the last choice
__
The translation function has the effect of moving the point left 3 and down 4. You can count grid squares on the graph to see that A' ends up at (-4, -2).
Check the picture below.
is it even? well, even functions use the y-axis as a mirror, so a pre-image on the right-side, will be a mirror of the image on the left-side, but in this case it isn't so, if you put a mirror right on the y-axis, the left-side will look a bit different.
does it have a zero at x = 0? well, just look at the graph, is the line touching the x-axis at 0? nope.
does it have an asymptote at 0? well, surely you can see it right there.