Answer:
4033
Step-by-step explanation:
An easy way to solve this problem is to notice the numerator, 2017^4-2016^4 resembles the special product a^2 - b^2. In this case, 2017^4 is a^2 and 2016^4 is b^2. We can set up equations to solve for a and b:
a^2 = 2017^4
a = 2017^2
b^2 = 2016^4
b = 2016^2
Now, the special product a^2 - b^2 factors to (a + b)(a - b), so we can substitute that for the numerator:
<h3>

</h3>
We can notice that both the numerator and denominator contain 2017^2 + 2016^2, so we can divide by
which is just one, and will simplify the fraction to just:
2017^2 - 2016^2
This again is just the special product a^2 - b^2, but in this case a is 2017 and b is 2016. Using this we can factor it:
(2017 + 2016)(2017 - 2016)
And, without using a calculator, this is easy to simplify:
(4033)(1)
4033
Answer:
200?
Step-by-step explanation:
Answer:
- Trinomials in the form
can often be factored as the product of two binomials.
Step-by-step explanation:
As we know that a polynomial with three terms is said to be a trinomial.
Considering the trinomial of a form

As
a = 1
so

- Trinomials in the form
can often be factored as the product of two binomials.
For example,





Therefore, Trinomials in the form
can often be factored as the product of two binomials.
Since we are using 3 sides of measurement and are looking for a volume, or a 3rd dimensional amount, the correct unit of measure is going to cm3, which is B.).
I hope this helps!
Answer:
I believe the answer is about 34
Step-by-step explanation: