1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
3 years ago
11

en \: cotA = \sqrt{\dfrac{1}{3}}" alt="Given \: cotA = \sqrt{\dfrac{1}{3}}" align="absmiddle" class="latex-formula">

Find all other trigonometric ratios. ​
Mathematics
2 answers:
ruslelena [56]3 years ago
5 0
<h3>Given :</h3>

\tt cotA = \sqrt{ \dfrac{1}{3}}

\tt \implies cotA = \dfrac{1}{\sqrt{3}}

<h3>To Find :</h3>

All other trigonometric ratios, which are :

  • sinA
  • cosA
  • tanA
  • cosecA
  • secA

<h3>Solution :</h3>

Let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base

\tt We \: are \: given, \: cotA = \dfrac{1}{\sqrt{3}}

\tt We \: know \: that \: cot \theta = \dfrac{base}{perpendicular}

\tt \implies  \dfrac{base}{perpendicular} = \dfrac{1}{\sqrt{3}}

\tt \implies  \dfrac{AB}{BC} = \dfrac{1}{\sqrt{3}}

\tt \implies  AB = 1x \: ; \: BC = \sqrt{3}x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have

AC² = AB² + BC²

\tt \implies AC^{2} = (1x)^{2} + (\sqrt{3}x)^{2}

\tt \implies AC^{2} = 1x^{2} + 3x^{2}

\tt \implies AC^{2} = 4x^{2}

\tt \implies AC = \sqrt{4x^{2}}

\tt \implies AC = 2x

Now,

\tt sin \theta = \dfrac{perpendicular}{hypotenuse}

\tt \implies sinA = \dfrac{BC}{AC}

\tt \implies sinA = \dfrac{\sqrt{3}x}{2x}

\tt \implies sinA = \dfrac{\sqrt{3}}{2}

\Large \boxed{\tt sinA = \dfrac{\sqrt{3}}{2}}

\tt cos \theta = \dfrac{base}{hypotenuse}

\tt \implies cosA = \dfrac{AB}{AC}

\tt \implies cosA = \dfrac{1x}{2x}

\tt \implies cosA = \dfrac{1}{2}

\Large \boxed{\tt cosA = \dfrac{1}{2}}

\tt tan \theta = \dfrac{perpendicular}{base}

\tt \implies tanA = \dfrac{BC}{AB}

\tt \implies tanA = \dfrac{\sqrt{3}x}{1x}

\tt \implies tanA = \sqrt{3}

\Large \boxed{\tt tanA = \sqrt{3}}

\tt cosec \theta = \dfrac{hypotenuse}{perpendicular}

\tt \implies cosecA = \dfrac{AC}{BC}

\tt \implies cosecA = \dfrac{2x}{\sqrt{3}x}

\tt \implies cosecA = \dfrac{2}{\sqrt{3}}

\Large \boxed{\tt cosecA = \dfrac{2}{\sqrt{3}}}

\tt sec \theta = \dfrac{hypotenuse}{base}

\tt \implies secA = \dfrac{AC}{AB}

\tt \implies secA = \dfrac{2x}{1x}

\tt \implies secA = 2

\Large \boxed{\tt secA = 2}

mario62 [17]3 years ago
4 0
<h3>Diagram :-</h3>

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(3,0){2.5cm}}\put(0,0){\line(0,3){2.5cm}}\qbezier(12.4,0)(6.6,5)(0,12.4)\put(-2,13){\sf A}\put(13,-2){\sf C}\put(-2,-2){\sf B}\put(-3,6){\sf 1}\put(6,-3){\sf \sqrt3$}\put(7,7){\sf 2}\end{picture}

<h3>Solution :-</h3>

Given ,

  • cotA = \sf \sqrt{\dfrac{1}{3}}=\dfrac{1}{\sqrt3}

We need to find ,

  • All the trigonometric identities

First finding the other side of the triangle using Pythagoras theorem .

Hypotenuse² = Base² + Height²

\to\sf Hypotenuse^2 = (1)^2 + (\sqrt3)^2

\to\sf Hypotenuse^2 = 1 + 3

\to \sf Hypotenuse = \sqrt4

\to\bf Hypotenuse = 2

Now ,

  • \rm sinA = \dfrac{opposite}{hypotenuse}=\sf\dfrac{\sqrt3}{2}

  • \rm cosA = \dfrac{adjacent}{hypotenuse}=\sf\dfrac{1}{2}

  • \rm tanA = \dfrac{opposite}{adjacent}=\sf\dfrac{\sqrt3}{1}

  • \rm cosecA=\dfrac{hypotenuse}{adjacent}=\sf\dfrac{2}{\sqrt3}

  • \rm secA = \dfrac{Hypotenuse}{adjacent}=\sf\dfrac{2}{1}

  • \rm cotA = Already\; given =\sf \dfrac{1}{\sqrt3}
You might be interested in
Please solve and thank you
ch4aika [34]
4
explaination - i know it it
6 0
3 years ago
A painter can paint a wall with an area of 3280 square feet with 8 gallons of paint which rate best represents the relationship
ElenaW [278]

Answer:

410:1

Step-by-step explanation:

5 0
3 years ago
What is the period of the function F(x)=1/2csc(6x-1)<br> A:pi/3<br> B:6pi<br> C:pi/2<br> D:2pi
sveta [45]

Answer:

gg

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Which is the best estimate for the sum 2/9 +10/11 ?
irakobra [83]

Answer:

D

Step-by-step explanation:

6 0
3 years ago
One gallon of paint is equivalent to 3.78 liters.Michael wants to determine how many centiliters this is.Which answer choice is
Jet001 [13]

Answer:

378 cl

Step-by-step explanation

1L=100 cl

3.78 × 100= 378 cl

8 0
3 years ago
Other questions:
  • HEEEELP!!!!! 30 POINTS! Conjecture: Points A, B, and C are noncollinear. Is this conjecture true? No, points A and B lie on the
    8·1 answer
  • Vijay has an annual salary of $47,000, and his company pays him twice a month. What is the gross income on each paycheck that Vi
    14·1 answer
  • By hw much is the difference of 604 and 406.64 less than thier sum ?
    14·2 answers
  • 2/3-1/6=? Pls help I suck at fractions
    6·2 answers
  • If the sum of the interior angles of a regular polygon 1260 degrees, how many sides does the polygon have?
    7·2 answers
  • In a triangle ABC if angle a = 60 °,angle<br> b= 60° then find c​
    9·1 answer
  • Find the solution when x=2 and y=6<br> x(7+ y) - 5
    14·1 answer
  • 27Kg 1/4g + 67Kg 1/3g =
    15·1 answer
  • Please help i will give brainliest
    8·1 answer
  • The voice onset time (vot) for the sound /da/ is 17 ms, and the vot for the sound /ta/ is 91 msec. When a computer produces a so
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!