1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NeX [460]
3 years ago
11

en \: cotA = \sqrt{\dfrac{1}{3}}" alt="Given \: cotA = \sqrt{\dfrac{1}{3}}" align="absmiddle" class="latex-formula">

Find all other trigonometric ratios. ​
Mathematics
2 answers:
ruslelena [56]3 years ago
5 0
<h3>Given :</h3>

\tt cotA = \sqrt{ \dfrac{1}{3}}

\tt \implies cotA = \dfrac{1}{\sqrt{3}}

<h3>To Find :</h3>

All other trigonometric ratios, which are :

  • sinA
  • cosA
  • tanA
  • cosecA
  • secA

<h3>Solution :</h3>

Let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base

\tt We \: are \: given, \: cotA = \dfrac{1}{\sqrt{3}}

\tt We \: know \: that \: cot \theta = \dfrac{base}{perpendicular}

\tt \implies  \dfrac{base}{perpendicular} = \dfrac{1}{\sqrt{3}}

\tt \implies  \dfrac{AB}{BC} = \dfrac{1}{\sqrt{3}}

\tt \implies  AB = 1x \: ; \: BC = \sqrt{3}x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have

AC² = AB² + BC²

\tt \implies AC^{2} = (1x)^{2} + (\sqrt{3}x)^{2}

\tt \implies AC^{2} = 1x^{2} + 3x^{2}

\tt \implies AC^{2} = 4x^{2}

\tt \implies AC = \sqrt{4x^{2}}

\tt \implies AC = 2x

Now,

\tt sin \theta = \dfrac{perpendicular}{hypotenuse}

\tt \implies sinA = \dfrac{BC}{AC}

\tt \implies sinA = \dfrac{\sqrt{3}x}{2x}

\tt \implies sinA = \dfrac{\sqrt{3}}{2}

\Large \boxed{\tt sinA = \dfrac{\sqrt{3}}{2}}

\tt cos \theta = \dfrac{base}{hypotenuse}

\tt \implies cosA = \dfrac{AB}{AC}

\tt \implies cosA = \dfrac{1x}{2x}

\tt \implies cosA = \dfrac{1}{2}

\Large \boxed{\tt cosA = \dfrac{1}{2}}

\tt tan \theta = \dfrac{perpendicular}{base}

\tt \implies tanA = \dfrac{BC}{AB}

\tt \implies tanA = \dfrac{\sqrt{3}x}{1x}

\tt \implies tanA = \sqrt{3}

\Large \boxed{\tt tanA = \sqrt{3}}

\tt cosec \theta = \dfrac{hypotenuse}{perpendicular}

\tt \implies cosecA = \dfrac{AC}{BC}

\tt \implies cosecA = \dfrac{2x}{\sqrt{3}x}

\tt \implies cosecA = \dfrac{2}{\sqrt{3}}

\Large \boxed{\tt cosecA = \dfrac{2}{\sqrt{3}}}

\tt sec \theta = \dfrac{hypotenuse}{base}

\tt \implies secA = \dfrac{AC}{AB}

\tt \implies secA = \dfrac{2x}{1x}

\tt \implies secA = 2

\Large \boxed{\tt secA = 2}

mario62 [17]3 years ago
4 0
<h3>Diagram :-</h3>

\setlength{\unitlength}{2mm}\begin{picture}(0,0)\thicklines\put(0,0){\line(3,0){2.5cm}}\put(0,0){\line(0,3){2.5cm}}\qbezier(12.4,0)(6.6,5)(0,12.4)\put(-2,13){\sf A}\put(13,-2){\sf C}\put(-2,-2){\sf B}\put(-3,6){\sf 1}\put(6,-3){\sf \sqrt3$}\put(7,7){\sf 2}\end{picture}

<h3>Solution :-</h3>

Given ,

  • cotA = \sf \sqrt{\dfrac{1}{3}}=\dfrac{1}{\sqrt3}

We need to find ,

  • All the trigonometric identities

First finding the other side of the triangle using Pythagoras theorem .

Hypotenuse² = Base² + Height²

\to\sf Hypotenuse^2 = (1)^2 + (\sqrt3)^2

\to\sf Hypotenuse^2 = 1 + 3

\to \sf Hypotenuse = \sqrt4

\to\bf Hypotenuse = 2

Now ,

  • \rm sinA = \dfrac{opposite}{hypotenuse}=\sf\dfrac{\sqrt3}{2}

  • \rm cosA = \dfrac{adjacent}{hypotenuse}=\sf\dfrac{1}{2}

  • \rm tanA = \dfrac{opposite}{adjacent}=\sf\dfrac{\sqrt3}{1}

  • \rm cosecA=\dfrac{hypotenuse}{adjacent}=\sf\dfrac{2}{\sqrt3}

  • \rm secA = \dfrac{Hypotenuse}{adjacent}=\sf\dfrac{2}{1}

  • \rm cotA = Already\; given =\sf \dfrac{1}{\sqrt3}
You might be interested in
27)
laila [671]
The answer is B.

You need to subtract 15% each year from the value of the car.
4 0
3 years ago
What multiplies to 30 but adds to -7
FinnZ [79.3K]

10 * 3

hope I helped :)

6 0
3 years ago
Read 2 more answers
Select all of the solutions to the system graphed below.​
ra1l [238]

0,-2

4,4

2,0

3,5

Step-by-step explanation:

that was my answer

3 0
3 years ago
Can someone please help me real quick? I’m running late to something important
Arada [10]

Answer:

35+2

Step-by-step explanation:

--=+

7 0
3 years ago
A Barrel in the Shape of a Cylinder is cut in half lengthwise to make the water trough for horses.​
attashe74 [19]
B (don’t mind this I need 20 characters
3 0
2 years ago
Other questions:
  • *25 points!*
    11·1 answer
  • 5/6x6/7=?? Please answer
    7·1 answer
  • Solve the inequality. Use algebra to solve the corresponding equation. x^2 - 11x + 30 ≥ 0
    13·1 answer
  • Printer allows for optional settings with a panel of six​on-off switches in a row. how many different settings can she select if
    7·1 answer
  • Help me plz tgbdsfvg
    9·2 answers
  • The low temperatures of four cities for August 26, 2007 are as follows:
    11·1 answer
  • If your truck gets 22 highway miles per gallon and has a 25 gallon gas tank, how many miles should you be able to drive on a ful
    14·2 answers
  • Joanna has been saving for retirement for 40 years. She made monthly deposits of $275 and earned 5.6% annual interest, compounde
    6·1 answer
  • What are all of these answers?
    13·2 answers
  • Solve. Show all steps. 0.5 (8-2x)= 3-(x - 1 )
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!