Answer:

Step-by-step explanation:
The relevant rule of exponents is ...
(a^b·c^d)^e = a^(be)·c^(de)
Then ...
(m^(5/4)·n^(-4/5))^(7/3) = m^(5/4·7/3)·n^(-4/5·7/3)
= m^(35/12)·n^(-28/15)
__
Since you want positive rational exponents, you can write this as ...
= m^(35/12)/n^(28/15)
Answer:
yes , 33^2 + 56^2 = 65^2 and obtuse
Step-by-step explanation:
<h2><u>Question 3</u></h2>
make use of the Pythagoras theorem
which is :
c^2 = a^2 + b^2
where c is the hypotenuse.
now put the values in the equation
65^2 = 56^2 + 33 ^2
the answer is :
<u>yes , 33^2 + 56^2 = 65^2</u>
<u></u>
<h2><u>Question 4</u></h2>
<u />
note if :
c^2 = a^2 + b^2 ----------- right
c^2 < a^2 + b^2------------ acute
c^2 > a^2 + b^2------------- obtuse
hence :
16 + 30 > 38
therefore its : <u>obtuse </u>
Answer:
212.5
Step-by-step explanation:
10=85
212.5=25
Answer:
q .no d
Step-by-step explanation:
64p^3+125
4p^3+ 5^3
(4p+ 5 ) ( 4p^2- 4p *5 + 5^2)
(4p+5) (16p- 20p+ 25)
B would be the correct answer