Answer:
the quotient of 3 and 4 subtracted from 25.
Step-by-step explanation:
Answer:
x-coordinates of relative extrema = 
x-coordinates of the inflexion points are 0, 1
Step-by-step explanation:

Differentiate with respect to x


Differentiate f'(x) with respect to x

At x =
,

We know that if
then x = a is a point of minima.
So,
is a point of minima.
For inflexion points:
Inflexion points are the points at which f''(x) = 0 or f''(x) is not defined.
So, x-coordinates of the inflexion points are 0, 1
Answer:
Y=9
Step-by-step explanation:
Because it passes through two points in a straight line, it must have no coefficient for x, just a Y-Intercept equal to the Y of the two points.
Answer:
85 degrees Fahrenheit
Step-by-step explanation:
The correct answer is: [B]: " 25 a²⁵ b²⁵ " .
_________________________________________________________
<span>Explanation:
_________________________________________________________
Given the expression:
_________________________________________________________
</span>→ " (−5a⁵b⁵)² (a³b³)⁵ " ; Simplify.
_________________________________________________________
Let us being by examining:
______________________________________
→ "(−5a⁵b⁵)² " .
→ "(−5a⁵b⁵)² = (-5)² * (a⁵)² * (b⁵)² = (-5)(-5) * a⁽⁵ˣ²⁾ * b⁽⁵ˣ²⁾ = 25a⁽¹⁰⁾b⁽¹⁰⁾ ;
{Note the following properties of exponents:
(xy)ⁿ = xⁿ * yⁿ ;
(xᵃ)ᵇ = x⁽ᵃ * ᵇ) ;
(xᵃ) * (xᵇ) = x⁽ᵃ ⁺ ᵇ⁾ .}.
______________________________________
Then, we examine:
______________________________________
→ "(a³b³)⁵ " .
→ "(a³b³)⁵ = a⁽³ˣ⁵⁾b⁽³ˣ⁵⁾ = a⁽¹⁵⁾b⁽¹⁵⁾ .
______________________________________
So: " (−5a⁵b⁵)² (a³b³)⁵ = (-5)a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;
________________________________________
Now, we simplify:
→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ " ;
→ " 25a⁽¹⁰⁾b⁽¹⁰⁾ * a⁽¹⁵⁾b⁽¹⁵⁾ ;
= 25a⁽¹⁰⁾ a⁽¹⁵⁾b⁽¹⁰⁾ b⁽¹⁵⁾ ;
= 25a⁽¹⁰ ⁺¹⁵⁾ b⁽¹⁰⁺¹⁵⁾ ;
= 25a⁽²⁵⁾ b⁽²⁵⁾ ;
_______________________________________________
→ which is: Answer choice: [B]: " 25 a²⁵ b²⁵ " .
______________________________________________