Answer:
1a. 32 2/5 F
1b. 73 2/5 F
C=(F-32)×5/9
2.P=$340
Step-by-step explanation:
Step-by-step explanation:
the positive integer numbers that are divisible by 7 are an arithmetic sequence by always adding 7 :
a1 = 7
a2 = a1 + 7 = 7+7 = 14
a3 = a2 + 7 = a1 + 7 + 7 = 7 + 2×7 = 21
...
an = a1 + (n-1)×7 = 7 + (n-1)×7 = n×7
the sum of an arithmetic sequence is
n/2 × (2a1 + (n - 1)×d)
with a1 being the first term (in our case 7).
d being the common difference from term to term (in our case 7).
how many terms (what is n) do we need to add ?
we need to find n, where the sequence reaches 200.
200 = n×7
n = 200/7 = 28.57142857...
so, with n = 29 we would get a number higher than 200.
so, n=28 gives us the last number divisible by 7 that is smaller than 200 (28×7 = 196).
the sum of all positive integers below 200 that are divisible by 7 is then
28/2 × (2×7 + 27×7) = 14 × 29×7 = 2,842
Answer:
okay he's saying that each student gets 25 points to start with and then they get five more like 25 / 25 * 5 or like 25 + 5 or 25 - 5 like represent those numbers and like get the number or something like that
Answer:
<h2><em><u>-20</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3m</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>6k</u></em></h2>
Step-by-step explanation:
<em><u>Given</u></em><em><u>, </u></em>
Sides of the triangle = (5k-7) cm, (k-4) cm and (3m - 9) cm
<em><u>Therefore</u></em><em><u>, </u></em>
Perimeter of the triangle in cm = (5k -7) cm + (k-4) cm + (3m - 9) cm
= 5k - 7 + k - 4 + 3m - 9
= 5k + k -7 - 4 - 9 + 3m
= 6k -20 + 3m
= - 20 + 3m + 6k
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>-20</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>3m</u></em><em><u> </u></em><em><u>+</u></em><em><u> </u></em><em><u>6k</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>perimeter</u></em><em><u> </u></em><em><u>of</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>triangle</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>cm</u></em><em><u>.</u></em>