1 x 5 = 5 + 3 = 8
tell me if it’s not the answer your looking for
Answers:
- A) Ray QS or Ray QR
- B) Line segment QS or SQ
- C) Plane QSR
- D) Line QS or RQ
=======================================================
Explanation:
Part A)
When naming a ray, always start at the endpoint. This is the first letter and we'll start with point Q.
The second letter is the point that is on the ray where the ray aims at. We have two choices S and R as they are both on the same ray. That's why we can name this Ray QS and Ray QR.
--------------------
Part B)
A segment is named by its endpoints. The order of the endpoints doesn't matter so that's why segment QS is the same as segment SQ. To me, it seems more natural to read from left to right, so QS seems better fitting (again the order doesn't matter).
--------------------
Part C)
When forming a plane, you need 3 noncollinear points. The term "collinear" means the points all fall on the same line. So these three points cannot all fall on the same straight line. In other words, we must be able to form a triangle of some sort.
So that's how we get the name "Plane QSR". The order of the letters doesn't matter.
--------------------
Part D)
To name a line, we just need to pick two points from it. Any two will do. The order doesn't matter. So that's how we get Line QS and Line RQ as two aliases for this same line. It turns out that there are 6 different ways to name this line.
- Line QR
- Line QS
- Line RQ
- Line RS
- Line SQ
- Line SR
Answer:
HK
Step-by-step explanation:
Please let me know if you want me to add an explanation as to why this is the answer. I can definitely do that, I just don’t want to waste my time in case you don’t want me to :)
Hi there
1+0.035=(1+r/360)^360
Solve for r
R=(((1.035)^(1÷360)−1)×360)×100
R=3.44%
Answer:
Two quantities can be compared by a ratio. As a fraction in the simplest form, a typical manner of expressing a ratio. If you compare the two numbers with distinct measuring units, this type of ratio is known as a rate. A rate is unit rate when it is 1. A rate is unit rate.
Step-by-step explanation: