The answer is choice A.
We're told that the left and right walls of the cube (LMN and PQR) are parallel planes. Any line contained in one of those planes will not meet another line contained in another plane. With choice A, it's possible to have the front and back walls be non-parallel and still meet the initial conditions. If this is the case, then OS won't be paralle to NR. Similarly, LP won't be parallel to MQ.
The solution to the equation is p = 1/3 and q = undefined
<h3>How to solve the equation?</h3>
The equation is given as:
p^2 - 2qp + 1/q = (p - 1/3)
The best way to solve the above equation is by the use of a graphing calculator i.e. graphically
However, it can be solved algebraically too (to some extent)
Recall that the equation is given as:
p^2 - 2qp + 1/q = (p - 1/3)
Split the equation
So, we have
p^2 - 2qp + 1/q = 0
p - 1/3 = 0
Solve for p in p - 1/3 = 0
p = 1/3
Substitute p = 1/3 in p^2 - 2qp + 1/q = 0
So, we have
(1/3)^2 - 2q(1/3) + 1/q = 0
This gives
1/9 - 2/3q + 1/q = 0
This gives
2/3q + 1/q = -1/9
Multiply though by q
So, we have
2/3q^2 + 1 = -1/9q
Multiply through by 9
6q^2 + 9 = -q
So, we have
6q^2 + q + 9 = 0
Using the graphing calculator, we have
q = undefined
Hence. the solution to the equation is p = 1/3 and q = undefined
Read more about equations at:
brainly.com/question/13763238
#SPJ1
Answer:

Step-by-step explanation:
Let's write the left hand side as a negative power, and 9 as a power of 3:
At this point, for the equality to still stand, the exponents have to be equal:

When given 3 triangle sides, to determine if the triangle is acute, right or obtuse:
1) Square all 3 sides.
4, 3, 4,
16, 9, 16
2) Sum the squares of the 2 shortest sides.
16 + 9 = 25
3) Compare this sum to the square of the 3rd side.
25 > 16
if sum > 3rd side² Acute Triangle
So, it is an acute triangle.
Source:
http://www.1728.org/triantest.htm