∠BDC and ∠AED are right angles, is a piece of additional information is appropriate to prove △ CEA ~ △ CDB
Triangle AEC is shown. Line segment B, D is drawn near point C to form triangle BDC.
<h3> What are Similar triangles?</h3>
Similar triangles, are those triangles which have similar properties,i.e. angles and proportionality of sides.
Image is attached below,
as shown in figure
∡ACE = ∡BCD ( common angle )
∡AED = ∡BDC ( since AE and BD are perpendicular to same line EC and make right angles as E and C)
∡EAC =- ∡DBC ( corresponding angles because AE and BD are parallel lines)
Thus, △CEA ~ △CDB , because of the two perpendiculars AE and BD.
Learn more about similar triangles here:
brainly.com/question/25882965
#SPJ1
Answer:
-14.120 Radians
Step-by-step explanation:
To convert, use this angle degrees to radians formula:
Radians = Degrees x ( Pi / 180)
Try using this formula
Answer:
Length of arc = 5 cm (Approx)
Step-by-step explanation:
Given:
Radius of circle = 20 cm
Angle = 1/4 radian
Find:
Length of arc
Computation:
Angle in degree = 1/4 radian × 180°π
Angle in degree = 1/4 × 180° / 22/7
Angle in degree = 14.31° Approx
Length of arc = (Ф / 360)2πr
Length of arc = (14.31 /360)2(22/7)(20)
Length of arc = 4.997 cm
Length of arc = 5 cm (Approx)
The first one is 63.9 and the second should be 116.1
Answer:
Just to start you off the first answer is 66.67
Step-by-step explanation:
You divide the first number by the second number so in this case 800/12=66.67