Don't know whether or not you've encountered differential equations yet, but will try that approach here.
The growth rate is dy/dt = ky (which states that the rate is proportional to the size of the population, y, and k is a constant.
Grouping like terms,
dy
--- = kt, so y = Ne^kt
y
We are told that at t=0, there are 880 bacteria. Thus, 880=N. Therefore,
y = 880e^(kt). After 5 hours the pop will be 4400; using this info, find k:
4400=880e^(5k), or 5 = e^(5k). So, our y = 880e^(kt) becomes
y = 880e^(5t).
What will be the pop after 2 hours? y(2)=880e^(10) = 880(22026) =
approx. 19,383,290 bacteria
Time to reach a pop of 2550? 2550 = 880e^(5t). Find t.
ln 2550 = ln 880 + 5t, so ln 2550 - ln 880 = 5t. Divide both sides by 5 to obtain this time, t.
1 5/10 = 1.5 minutes
1 minutes is 60 seconds
1.5 * 60 = 90 second
90 seconds = 1 minutes and 30 seconds.
Answer:
the answer is 23
x + x+1 + x+2
3x+3 =72
69/3=23 = x
23+24+25 =72
Hope that answers your question
Don't hesitate to leave comment if you are confused about something
Step-by-step explanation:
Answer:
40mm.
there are 10 mm. in a cm, so if there are 4 cm, then there are 40 mm.
Hope this helps :)
F(x) = ax + b
Usa-se a informacao dada para criar um sistema de 2 equacoes com 2 variaveis. Resolve-se o sistema pare determinar os valores de a e b.Uma vez que se sabe os valores de a e b, escreve-se a funcao f com os valores de a e b. Finalmente calcucla-se f(3) usando a funcao f.
f(-1) = 3
a(-1) + b = 3
f(1) = -1
a(1) + b = -1
O sistema de equacoes e o seguinte.
Resolvemo-lo par adicao.
A variavel a e eliminada.
-a + b = 3
a + b = -1
2b = 2
b = 1
a + 1 = -1
a = -2
Agora sabemos the a = -2 e b = 1.
Escrevemos a funcao f usando os valores the a e b calculados..
f(x) = -2x + 1
f(3) = -2(3) + 1 = -6 + 1 = -5
f(3) = -5