Answer:
is one
Step-by-step explanation:
its just one i know trust me
Answer:
.894
Step-by-step explanation:
First thing to do is to solve for the height of the triangle, BD. That's easy. We have the length of the hypotenuse and the base, so Pythagorean's Theorem gives us that the height is 8.003255588 which rounds nicely to 8. Now you have to call on the fond memories you have of the geometric mean in right triangles to solve the rest. For the sin of x you need the hypotenuse of that smaller right triangle on the left, side AB. First let's use geometric mean to find AD. The formula for that, now that we know the height, is

Filling that in with numbers we have
and
64 = 16(AD). Solve for AD to get that AD has a length of 4. Now we know two of the three sides in that smaller triangle on the left and can solve for the hypotenuse.
and
so
c=√80 which simplifies to 4√5. That means that the sin ratio for x is

which divides out to .894
Answer:
2 eggs and 5 cups sugar
double both equally
4eggs and 10 cups sugar
6 eggs and 15 cups sugar
8 eggs and 20 cups of sugar
or take 20 cups of sugar and divide by 5 cups of sugar. you end up with 4. multiply the 2 eggs by 4. Total will be 8 eggs and 20 cups of sugar
Answer:
Step-by-step explanation:
-1
Exponential:
It is called the exponential function of base a, to that whose generic form is f (x) = a ^ x, being a positive number other than 1.
Every exponential function of the form f (x) = a^x, complies with the followingProperties:
1. The function applied to the zero value is always equal to 1: f (0) = a ^ 0 = 1
2. The exponential function of 1 is always equal to the base: f (1) = a ^ 1 = a.
3. The exponential function of a sum of values is equal to the product of the application of said function on each value separately.
f (m + n) = a ^ (m + n) = a ^ m · a ^ n
= f (m) · f (n).
4. The exponential function of a subtraction is equal to the quotient of its application to the minuend divided by the application to the subtrahend:
f (p - q) = a ^ (p - q) = a ^ p / a ^ q
Logarithm:
In the loga (b), a is called the base of the logarithm and b is called an argument, with a and b positive.
Therefore, the definition of logarithm is:
loga b = n ---> a ^ n = b (a> 0, b> 0)