Step-by-step explanation:
A=1/2(B1+B2)h is a trapezoid
A=1/2bh is a triangle
A=bh is a parallelogram
And A=Pir2 is a circle
Answer:
The error interval for x is:
[3.65,3.74]
Step-by-step explanation:
The number after rounding off is obtained as:
3.7
We know that any of the number below on rounding off the number to the first decimal place will result in 3.7:
3.65 3.66 3.67 3.68 3.69 3.70 3.71 3.72 3.73 3.74
( Because if we have to round off a number present in decimals to n place then if there is a number greater than or equal to 5 at n+1 place then it will result to the one higher digit at nth place on rounding off and won't change the digit if it less than 5 )
Hence, the error interval is:
[3.65,3.74]
Answer:
Solution By Gauss jordan elimination method
x = 3, y = 2 and z = 4
Answer:
<h2>3) -82.</h2><h2>4)-70.</h2><h2>5) -15.</h2><h2>6)-14.</h2><h2>7)5</h2><h2>8)15</h2><h2>9)16</h2><h2>10 )16</h2><h2>11)64</h2><h2>12)21.</h2><h2>13)1500 in the middle (not above not below)</h2><h2>14)450 m</h2>
(a) If the particle's position (measured with some unit) at time <em>t</em> is given by <em>s(t)</em>, where

then the velocity at time <em>t</em>, <em>v(t)</em>, is given by the derivative of <em>s(t)</em>,

(b) The velocity after 3 seconds is

(c) The particle is at rest when its velocity is zero:

(d) The particle is moving in the positive direction when its position is increasing, or equivalently when its velocity is positive:

In interval notation, this happens for <em>t</em> in the interval (0, √11) or approximately (0, 3.317) s.
(e) The total distance traveled is given by the definite integral,

By definition of absolute value, we have

In part (d), we've shown that <em>v(t)</em> > 0 when -√11 < <em>t</em> < √11, so we split up the integral at <em>t</em> = √11 as

and by the fundamental theorem of calculus, since we know <em>v(t)</em> is the derivative of <em>s(t)</em>, this reduces to
