Answer:
3 people
Step-by-step explanation:
Reading a stem & leaf plot can be hard!
Remember in the middle or whichever side is single digits divided by the line is your tens place values.
The 2 has two values on the other side, giving us 23 & 29 laps.
The 1 has one value on the other side, giving us 11 laps.
The 0 has no other value, so there is no data for that row.
There were 3 data points below 30, & these were 11, 23, & 29.
Hope this helped. :)

therefore, the sum of this infinite geometric series can be calculated using the formula
.
So, 
If 2 is the sum of this infinite series, then you'll never reach it.
3.) 3sinθ = sinθ - 1
3sinθ - sinθ = -1
2sinθ = -1
sinθ = -1/2
θ = sin^-1(-1/2) = π + π/6, 2π - π/6 = 7π/6, 11π/6
4.) tan^2 θ = -3/2 sec θ
sin^2 θ / cos^2 θ = -3/2(1/cos θ)
sin^2 θ / cos θ = -3/2
1 - cos^2 θ = -3/2 cos θ
cos^2 θ - 3/2 cos θ - 1 = 0
2cos^2 θ - 3cos θ - 2 = 0
2cos^2 θ - 4cos θ + cos θ - 2 = 0
2cos θ (cos θ - 2) + 1(cos θ - 2) = 0
(2cos θ + 1) = 0 or (cos θ - 2) = 0
cos θ = -1/2 or cos θ = 2 [but cos θ can never be 2]
θ = cos^-1(-1/2) = π - π/3, π + π/3 = 2π/3, 4π/3
Answer:
![\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%202e%5E%7B2x%7D)
![\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%203e%5E%7B3x%7D)
General Formulas and Concepts:
<u>Algebra I</u>
- Terms/Coefficients
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Derivatives
Derivative Notation
eˣ Derivative: ![\displaystyle \frac{d}{dx}[e^x] = e^x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5D%20%3D%20e%5Ex)
Derivative Rule [Product Rule]: ![\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bf%28x%29g%28x%29%5D%3Df%27%28x%29g%28x%29%20%2B%20g%27%28x%29f%28x%29)
Step-by-step explanation:
<u>Step 1: Define</u>
<u />
<u />
<u />
<u />
<u />
<u>Step 2: Differentiate</u>
<u />
<u />
- [Derivative] Product Rule:
![\displaystyle \frac{d}{dx}[e^{2x}] = \frac{d}{dx}[e^x]e^x + e^x\frac{d}{dx}[e^x]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5De%5Ex%20%2B%20e%5Ex%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5D)
- [Derivative] eˣ Derivative:
![\displaystyle \frac{d}{dx}[e^{2x}] = e^x \cdot e^x + e^x \cdot e^x](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20e%5Ex%20%5Ccdot%20e%5Ex%20%2B%20e%5Ex%20%5Ccdot%20e%5Ex)
- [Derivative] Multiply [Exponential Rule - Multiplying]:
![\displaystyle \frac{d}{dx}[e^{2x}] = e^{2x} + e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%20e%5E%7B2x%7D%20%2B%20e%5E%7B2x%7D)
- [Derivative] Combine like terms [Addition]:
![\displaystyle \frac{d}{dx}[e^{2x}] = 2e^{2x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D%20%3D%202e%5E%7B2x%7D)
![\displaystyle \frac{d}{dx}[e^{3x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D)
- [Derivative] Product Rule:
![\displaystyle \frac{d}{dx}[e^{3x}] = \frac{d}{dx}[e^x]e^{2x} + e^x\frac{d}{dx}[e^{2x}]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5Ex%5De%5E%7B2x%7D%20%2B%20e%5Ex%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B2x%7D%5D)
- [Derivative] eˣ Derivatives:
![\displaystyle \frac{d}{dx}[e^{3x}] = e^x(e^{2x}) + e^x(2e^{2x})](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20e%5Ex%28e%5E%7B2x%7D%29%20%2B%20e%5Ex%282e%5E%7B2x%7D%29)
- [Derivative] Multiply [Exponential Rule - Multiplying]:
![\displaystyle \frac{d}{dx}[e^{3x}] = e^{3x} + 2e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%20e%5E%7B3x%7D%20%2B%202e%5E%7B3x%7D)
- [Derivative] Combine like terms [Addition]:
![\displaystyle \frac{d}{dx}[e^{3x}] = 3e^{3x}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Be%5E%7B3x%7D%5D%20%3D%203e%5E%7B3x%7D)
Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Derivatives
Book: College Calculus 10e