So, to find the solution to this problem, we will we using pretty much the same method we used in your previous question. First, let's find the area of the rectangle. The area of a rectangle is length x width. The length in this problem is 16 and the width is 3, and after multiplying these together, we have found 48 in^2 to be the area of the square. Next, we can find the area of the trapezoid. The area of a trapezoid is ((a+b)/2)h where a is the first base, b is the second base, and h is the height. In this problem, a=16, b=5, and h=10. So, all we have to do is plug these values into the area formula. ((16+5)/2)10 = (21/2)10 = 105. So, the area of the trapezoid is 105 in^2. Now after adding the two areas together (48in^2 and 105in^2), we have found the solution to be 153in^2. I hope this helped! :)
Answer:
part C. 3x + 2y <u>< </u>30, 5x + 7y <u><</u> 105
Step-by-step explanation:
Part 1:
spends 3 hours making each type X (3x)-each type x will take 3 hours so as the number of type x increases, the hours will increase by 3.
spends 2 hours making each type Y (2y)-each type y will take 2 hours so as the number of type y increases, the hours will increase by 2.
Part 2:
he can spend up to 30 hours each week making carvings. (<u><</u>30)-because he cannot spend more than 30 hours
Therefore, He has to spend 30 hours or less to make type X and type Y.
3x + 2y <u>< </u>30
Part 3:
His materials cost him $5 for each type X carving. (5x)-each type x will take $5 so as the number of type x increases, the cost will increase by 5.
His materials cost him $7 for each type Y carving, (7y)-each type y will take $7 so as the number of type y increases, the cost will increase by 7.
Part 4:
he must keep his weekly cost for materials to $105 or less (<u><</u>105)-total cost cannot be more than $105.
Therefore, the total cost of making x and y should be $105 or less.
5x + 7y <u><</u> 105
!!
Answer:
1/8 (Decimal: 0.125)
Step-by-step explanation:
Answer:
Anyone have all the answers?
Step-by-step explanation:
Answer:
x = 32°
Step-by-step explanation:
∆KLM is an isosceles triangle because it has two equal sides, KL & KM. Therefore, the angles opposite to each of the two equal sides, which are referred to as the base angles are congruent to each other.
m<KML = m<KLM = 58°
m<MKL = 180 - (58 + 58) (Sum of triangle)
m<MKL = 64°
m<JKM = 180 - m<MKL (linear pair theorem)
m<JKM = 180 - 64 (Substitution)
m<JKM = 116°
∆JKM is also an isosceles triangle with two equal sides. Therefore, it's based angles (x & <J) would also be equal to each other.
Thus:
x = ½(180 - m<JKM)
x = ½(180 - 116) (Substitution)
x = 32°