Not possible, we can't answer the question if we can't see the dimensions.
#BestAnswer
Sin(4x) - sin(8x)
sin(2(2x)) - sin(2(4x))
2sin(2x)cos(2x) - 2sin(4x)cos(4x)
2[sin(x)cos(x)][cos²(x) - sin²(x)] - [2sin(2(2x))cos(2(2x))]
{2[sin(x)cos³(x) - sin³(x)cos(x)]} - [2[2sin(2x)cos(2x)][cos²(x) - sin²(x)]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - {[2[2[sin(x)cos(x)][cos²(x) - sin²(x)]][cos²(x) - sin²(x)]}
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos(x)][cos⁴(x) - 2cos²(x)sin²(x) - sin⁴(x)]]]]
[2sin(x)cos³(x) - 2sin³(x)cos(x)] - [2[2[sin(x)cos⁵(x) - 2sin³(x)cos³(x) + sin⁵(x)cos(x)]]]
2sin(x)cos³(x) - 2sin³(x)cos(x) - 4sin(x)cos⁵(x) + 8sin³(x)cos³(x) - 4sin⁵(x)cos(x)
Answer:
I think number 17 is 180°
Answer:

Step-by-step explanation:
3 minutes 59.1 seconds = (3*60) + 59.1 seconds = 180 + 59.1 seconds
=> 239.1 seconds
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
4 minutes 3.8 seconds = (4*60) + 3.8 seconds = 240 + 3.8 seconds
=> 243.8 seconds
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
4 minutes 1.6 seconds = (4*60) + 1.6 seconds = 240 + 1.6 seconds
=> 241.6 seconds
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Mean = Sum of data / No. of Data
Mean = 239.1 + 243.8 + 241.6 / 3
Mean = 724.5 / 3
Mean = 241.5 seconds
<u>In Minutes and Seconds:</u>
= 241.5 / 60 = 4.025 minutes
= 4 minutes + 0.025 minutes
= 4 minutes + (0.025 * 60) seconds
= 4 minutes 1.5 seconds
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>
~AH1807</h3>
Answer:
1+2, 1+4, 2+1, 2+3, 3+2, 3+4, 4+1, 4+3, 5+6, 5+8, 6+5, 6+7, 7+8, 7+6, 8+5, 8+7
Step-by-step explanation:
To be supplementary is to be equal to 180 degrees.