1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tems11 [23]
3 years ago
14

Which of the following are the smallest organisms in the ocean, and largely responsible for the generation of our oxygen?

Biology
1 answer:
yuradex [85]3 years ago
5 0
Phytoplankton <span>are the smallest organisms in the ocean, and largely responsible for the generation of our oxygen.</span>
You might be interested in
How would the contractile vacuole of a freshwater amoeba respond if the organism was placed in seawater?
saw5 [17]

Correct answer: B). With fewer contractions


The main function of a contractile vacuole is to maintain the sufficient amount of water in the protoplasm of the cell. For the freshwater amoeba contractile vacuole is needed to pump water and maintain a osmoregulation.

But when it is kept in sea water, more contraction is required to expel the water out of the cell in order to make the environment inside amoeba same as of sea water.






6 0
3 years ago
Read 2 more answers
En qué caso los microorganismos pueden ser beneficios y en qué casos perjudicales para la salud de los seres humanos dos benefic
aliina [53]

Answer:

Ver explicacion

Explanation:

Los microorganismos son beneficiosos y perjudiciales para los seres humanos.

Los microorganismos son útiles en la producción de alimentos. Se utilizan en la elaboración de productos alimenticios como queso, pan, vino, etc.

En segundo lugar, los microorganismos están involucrados en la producción de vitamina K en el cuerpo.

por otro lado, los microorganismos provocan enfermedades que conducen a la morbilidad y mortalidad de los seres humanos.

Además, los microorganismos provocan el deterioro de los alimentos.

7 0
3 years ago
The fibers of the iliocostalis muscle are divided into which three regions?
Sphinxa [80]

Answer:lumbar, thoracic and cervical

Explanation:

Iliocostalis muscles is the most inferior and lateral of the erector spinae muscles.

4 0
3 years ago
N which vertebrates did feathers first evolve?
Lapatulllka [165]
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others. 

Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body. 

In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock. 

Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders. 

Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs." 

Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird. 

In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals. 

See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
3 0
3 years ago
3 Polnts
frozen [14]

D.

when revising your professional development plan

7 0
3 years ago
Other questions:
  • The table above shows five different types of chromosomal abnormalities that can occur during meiosis. They result in either an
    9·1 answer
  • When veiwing a human karyotype to detect genetic disorders, whic situation indicate a genetic problem
    13·1 answer
  • What are the functions of water in the human body
    11·1 answer
  • Fill in the blanks to complete each statement about the age of Earth. According to scientific evidence, Earth is approximately 4
    8·1 answer
  • Air pollution is caused by;
    5·1 answer
  • True or False: The greater the charges
    15·1 answer
  • Volcanoes are part of which sphere of Earth?
    6·1 answer
  • Hi guys can you guys help me with this question b plss<br>​
    7·1 answer
  • What is the complementary strand of the following DNA sequence? ATTGACGTA
    13·2 answers
  • This type of endocytosis is the cellular process of engulfing liquid particles by the cell membrane.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!