For the answer to the question above, <span>r = 1 + cos θ x = r cos θ x = ( 1 + cos θ) cos θ x = cos θ + cos^2 θ dx/dθ = -sin θ + 2 cos θ (-sin θ) dx/dθ = -sin θ - 2 cos θ sin θ y = r sin θ y = (1 + cos θ) sin θ y = sin θ + cos θ sin θ dy/dθ = cos θ - sin^2 θ + cos^2 θ dy/dx = (dy/dθ) / (dx/dθ) dy/dx = (cos θ - sin^2 θ + cos^2 θ)/ (-sin θ - 2 cos θ sin θ) For horizontal tangent line, dy/dθ = 0 cos θ - sin^2 θ + cos^2 θ = 0 cos θ - (1-cos^2 θ) + cos^2 θ = 0 cos θ -1 + 2 cos^2 θ = 0 2 cos^2 θ + cos θ -1 = 0 Let y = cos θ 2y^2+y-1=0 2y^2+2y-y-1=0 2y(y+1)-1(y+1)=0 (y+1)(2y-1)=0 y=-1 y=1/2 cos θ =-1 θ = π cos θ =1/2 θ = π/3 , 5π/3 θ = π/3 , π, 5π/3 when θ = π/3, r = 3/2 when θ = π, r = 0 when θ = 5π/3 , r = 3/2 (3/2, π/3) and (3/2, 5π/3) give horizontal tangent lines </span>--------------------------------------------------------------------------------- For horizontal tangent line, dx/dθ = 0 <span>-sin θ - 2 cos θ sin θ = 0 </span> <span>-sin θ (1+ 2 cos θ ) = 0 </span> <span>sin θ = 0 </span> <span>θ = 0, π </span> <span>(1+ 2 cos θ ) =0 </span> <span>cos θ =-1/2 </span> <span>θ = 2π/3 </span> <span>θ = 4π/3 </span> <span>θ = 0, 2π/3 ,π, 4π/3 </span> <span>when θ = 0, r=2 </span> <span>when θ = 2π/3, r=1/2 </span> <span>when θ = π, r=0 </span> <span>when θ = 4π/3 , r=1/2 </span> <span>(2,0) , (1/2, 2π/3) , (0, π), (1/2, 4π/3) </span> <span>At (2,0) there is a vertical tangent line</span>