To write a fraction in to a decimal, we carry out the long division. We divide the numerator with the denominator.
In the question above, we first form the fraction.
<span>5 Over 96 = 5/96
= 5 </span>÷ 96
<span> = 0.052083333
To the nearest hundredth, the answer is 0.05 </span>
To find the x int, we will sub in 0 for y and solve for x...um...r
- 2r + 1/2y = 18
-2r + 1/2(0) = 18
-2r = 18
r = -18/2
r = -9
so the x int is (-9,0)
Answer:
1. x = 11.5
2. x = 14.35
Step-by-step explanation:


x = 11.472 ≈ 11.5


x = 14.352 ≈ 14.35
<em>H</em><em>O</em><em>P</em><em>E</em><em> </em><em>T</em><em>H</em><em>I</em><em>S</em><em> </em><em>H</em><em>E</em><em>L</em><em>P</em><em>S</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>H</em><em>A</em><em>V</em><em>E</em><em> </em><em>A</em><em> </em><em>N</em><em>I</em><em>C</em><em>E</em><em> </em><em>D</em><em>A</em><em>Y</em><em> </em><em><</em><em>3</em>
f(x) = tan2(x) + (√3 - 1)[tan(x)] - √3 = 0
tan2(x) + √3[tan(x)] - tan(x) - √3 = 0
Factor into
[-1 + tan(x)]*[√3 + tan(x)] = 0
which means
[-1 + tan(x)] = 0 and/or [√3 + tan(x)] = 0
Then
tan(x) = 1
tan-1(1) = pi/4 radians
For the other equation
[√3 + tan(x)] = 0
tan(x) = -√3
tan-1(-√3) = -pi/3
so that
x = pi/4 or -pi/3 in the interval [0, 2pi]
Theres an app i can help u with its called photo math and it tells u every answer maybe that will help?