1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bezimeni [28]
4 years ago
10

Under certain circumstances, a rumor spreads according to the equation p(t)=1/1+ae−kt where p(t) is the proportion of the popula

tion that knows the rumor at time t, and a and k are positive constants. (a) Find limt→[infinity]p(t). (b) Find the rate of speed of the rumor. (c) How long will it take for 80% of the population to hear the rumor? Here, take a=10,k=0.5 with t measured in hours.
Mathematics
1 answer:
Julli [10]4 years ago
4 0

Answer:

(a) \lim_{t \to \infty} \frac{1}{1+ae^{-kt}}=1

(b) \frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}

(c) 80% of the population will have heard the rumor in about 7.4 hrs.

Step-by-step explanation:

We know that a rumor spreads according to the equation

p(t)=\frac{1}{1+ae^{-kt}}

where p(t) is the proportion of the population that knows the rumor at time t, and a and k are positive constants.

(a) To find \lim_{t \to \infty} p(t) you must:

Use this fact,

\lim _{x\to a}\left[\frac{f\left(x\right)}{g\left(x\right)}\right]=\frac{\lim _{x\to a}f\left(x\right)}{\lim _{x\to a}g\left(x\right)},\:\quad \lim _{x\to a}g\left(x\right)\ne 0

\lim_{t \to \infty} \frac{1}{1+ae^{-kt}}\\\\\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}

Apply this identity, to find \lim _{t\to \infty \:}\left(1)

\lim _{x\to a}c=c

\lim _{t\to \infty \:}\left(1\right)=1

\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=\lim _{t\to \infty \:}\left\left(1\right)+\lim _{t\to \infty \:}\left(ae^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+a\cdot \lim _{t\to \infty \:}\left(e^{-kt}\right)\\\\\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)=1+0

\frac{\lim _{t\to \infty \:}\left(1\right)}{\lim _{t\to \infty \:}\left(1+ae^{-kt}\right)}=\frac{1}{1+0} =1

(b) To find the rate of speed of the rumor you must find the derivative \frac{dp}{dt}

\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)\\\\\frac{d}{dt}\left(\left(1+ae^{-kt}\right)^{-1}\right)\\\\\mathrm{Apply\:the\:chain\:rule}:\quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}\\\\\frac{d}{du}\left(u^{-1}\right)\frac{d}{dt}\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{u^2}\right)\left(-ake^{-kt}\right)\\\\\mathrm{Substitute\:back}\:u=\left(1+ae^{-kt}\right)\\\\\left(-\frac{1}{\left(1+ae^{-kt}\right)^2}\right)\left(-ake^{-kt}\right)

\frac{d}{dt}\left(\frac{1}{1+ae^{-kt}}\right)=\frac{ake^{-kt}}{\left(1+ae^{-kt}\right)^2}

(c) To find the time that will take for 80% of the population to hear the rumor, you must substitute a = 10, k = 0.5, and p(t) = 0.8 into p(t)=\frac{1}{1+ae^{-kt}} and solve for t

\frac{1}{1+10e^{-0.5t}}=0.8\\\\\frac{1}{1+10e^{-0.5t}}\left(1+10e^{-0.5t}\right)=0.8\left(1+10e^{-0.5t}\right)\\\\1=0.8\left(1+10e^{-0.5t}\right)\\\\0.8\left(1+10e^{-0.5t}\right)=1\\\\0.8\left(1+10e^{-0.5t}\right)\cdot \:10=1\cdot \:10\\\\8\left(1+10e^{-0.5t}\right)=10\\\\\frac{8\left(1+10e^{-0.5t}\right)}{8}=\frac{10}{8}\\\\1+10e^{-0.5t}=\frac{5}{4}\\\\1+10e^{-0.5t}-1=\frac{5}{4}-1\\\\10e^{-0.5t}=\frac{1}{4}\\\\\frac{10e^{-0.5t}}{10}=\frac{\frac{1}{4}}{10}

e^{-0.5t}=\frac{1}{40}\\\\\ln \left(e^{-0.5t}\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t\ln \left(e\right)=\ln \left(\frac{1}{40}\right)\\\\-0.5t=\ln \left(\frac{1}{40}\right)\\\\t=2\ln \left(40\right) \approx 7.377 \:hrs

You might be interested in
Which number line shows two different integers with the same value? A. 3 and 6 B. 5 and -5 C. 0 and 4 D.-4 and -2
Marizza181 [45]
None of the number lines show the same value
5 0
3 years ago
Read 2 more answers
6 8<br> What is the determinant of K=<br> O -18<br> -8<br> O 10<br> O 18<br> ?
erik [133]

Answer:

A:-18

Step-by-step explanation:

Hopefully this helps!

3 0
3 years ago
In a sample of 200 households, the mean number of hours spent on social networking sites during the month of January was 55 hour
aleksandrvk [35]

MOE = +\- 1.27

The 99% confidence interval ranges from 53.73 to 56.27 hours.

4 0
4 years ago
Read 2 more answers
Find the angle for this problem
jolli1 [7]

Answer:

ans: 31°

Step-by-step explanation:

<EFG = <EFH + <HFG

2x+52= 21 + ( x+31)

2x-x= 21 +31 -52

x= 0

so our question is to find <HFG so,

x+31°= 31°

7 0
3 years ago
Please help I just need the equation
marishachu [46]

Answer:

y = -5x

Step-by-step explanation:

don't mind this bsjsvaauuachjquav

6 0
3 years ago
Other questions:
  • In a survey of 1756 adults 37% responded yes to the Severy question how many adults answer yes?
    14·2 answers
  • 2-10x=-8x-8 helpppp pleaseeee
    7·1 answer
  • Your cell phone plan allows you 500 minutes to
    5·2 answers
  • Determine if the following conjecture is valid.
    10·1 answer
  • Is tt a irrational number
    10·1 answer
  • Jasmine is planning a surprise birthday for one of her coworkers. One pizza is $11 and a cake is $18. If Jasmine has $84, how ma
    14·1 answer
  • How many kilograms of rice will each person get if 6 people share 1-2 of a kilogram of rice equally?
    10·2 answers
  • What did he do wrong
    6·1 answer
  • Can You Help Me With This Question
    10·1 answer
  • X - 8 = -12<br><br> Solve for x<br><br> x = ?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!