Answer:
The answer would be: We are 95% confident that the interval from 55.4 seconds to 61.2 seconds actually does contain the true value of μ.
Answer:
0.3101001000......
0.410100100010000....
Step-by-step explanation:
To find irrational number between any two numbers, we first need to understand what a rational and irrational number is.
Rational number is any number that can be expressed in fraction of form
. Since q can be 1, all numbers that terminate are rational numbers. Example: 1, 12.34, 123.66663
Irrational number on the other hand can't be expressed as a fraction and do not terminate. Also, there is no pattern in numbers i.e. there is no repetition in numbers after the decimal point.
For example: 3.44444..... can be expressed as rational number 3.45.
But 3.414114111.... is an irrational number as there no pattern observed. Also,it does not terminate.
We can find infinite number of irrational numbers in between two rational numbers.
<u>Irrational numbers in between 0.3 and 0.7:</u>
0.3101001000......
0.410100100010000....
0.51010010001.......
0.6101001000....
There are many others. We can choose any two as answers.
Answer:
B= 9/2 Hope this helped <3
Step-by-step explanation:
Let's solve your equation step-by-step.
4(b−3)=6
Step 1: Simplify both sides of the equation.
4(b−3)=6
(4)(b)+(4)(−3)=6(Distribute)
4b+−12=6
4b−12=6
Step 2: Add 12 to both sides.
4b−12+12=6+12
4b=18
Step 3: Divide both sides by 4
It would be 1,200 because you just have to multiply 400 times 3 hope it helped :)
Answer:
We use Baye's theorem: P(A)P(B|A) = P(B)P(A|B)
with (A) being defective and
(B) marked as defective
we have to find P(B) = P(A).P(B|A) + P(¬A)P(B|¬A). .......eq(2)
Since P(A) = 0.1 and P(B|A)=0.9,
P(¬A) = 1 - P(A) = 1 - 0.1 = 0.9
and
P(B|A¬) = 1 - P(¬B|¬A) = 1 - 0.85 = 0.15
put these values in eq(2)
P(B) = (0.1 × 0.9) + (0.9 × 0.15)
= 0.225 put this in eq(1) and solve for P(B)
P(B) = 0.4