What is the equation, in standard form, of a parabola that contains the following points?. . (–2, 18), (0, 2), (4, 42). . A) y =
–2x^2 – 2x – 3. B) y = –3x^2 + 2x – 2. C) y = 3x^2 – 2x + 2. D) y = –2x^2 + 3x + 3
2 answers:
Hello,
Answer C
y=ax²+bx+c
(0,2)==>2=a*0²+b*0+c==>c=2
(4,42)==>42=a*16+4b+2==>4a+b=10 (1)
(-2,18)==>18=a*4-2*b+2==>4a-2b=16 (2)
(1)-(2) ==>3b=10-16 ==>b=-2
4a+(-2)=10==>4a=12==>a=3
y=3x²-2x+2 is the equation
<span>The equation of parabola is:
y = ax² + bx + c.
</span>consider the (0, 2) to get the intercept.
substitute x = 0 and <span>y = 2 into the equation.
</span>2 = a(0)² + b(0) + c
<span>c = 2
</span>Similarly,
considering the point (- 2, 18):
Substitute x = - 2 ,y = 18 ,and <span>c = 2
</span>18 = a(- 2)² + b(- 2) + 2
18 = 4a - 2b + 2
Simplifying:
4a - 2b = 16
<span>2a - b = 8
</span>Solve for b:
Hence,
<span>b = 2a - 8 ------(1)
</span>
Now,
Substitute x = 4,y = 42, and c = 2
42 = a(4)² + b(4) + 2
<span>42 = 16a + 4b + 2 </span>
<span>16a + 4b = 40
</span>divide each term by 4.
We get,
<span>4a + b = 10 -------(2)
</span>
<span>Substitute b= 2a - 8 in Equation (2),
</span>We get:
4a + 2a - 8 = 10
<span>6a = 18 + 8 </span>
<span>6a = 18 </span>
<span>a = 3
</span>Substituting a = 3 in b=<span> 2a - 8
b = 6-8
b = -2
Hence,
our final equation will be:
</span><span>y = 3x² - 2x + 2</span>
You might be interested in
300 + 0+ 1, 200 + 50+ 6, 800 +70 + 8.
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
![y= [-7-6]](https://tex.z-dn.net/?f=y%3D%20%5B-7-6%5D)

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀
I have the same question too so I need help on it
You need to do 27 X 10 which equals 270