Answer:
The required points are -
(-2,8), (7,5), (1,7)
I am orearte sure the correct answer is 280 please give me brainliest if u can
The standard form of a quadratic equation is

, while the vertex form is:

, where (h, k) is the vertex of the parabola.
What we want is to write

as

First, we note that all the three terms have a factor of 3, so we factorize it and write:

.
Second, we notice that

are the terms produced by

, without the 9. So we can write:

, and substituting in

we have:
![\displaystyle{ y=3(x^2-6x-2)=3[(x-3)^2-9-2]=3[(x-3)^2-11]](https://tex.z-dn.net/?f=%5Cdisplaystyle%7B%20y%3D3%28x%5E2-6x-2%29%3D3%5B%28x-3%29%5E2-9-2%5D%3D3%5B%28x-3%29%5E2-11%5D)
.
Finally, distributing 3 over the two terms in the brackets we have:
![y=3[x-3]^2-33](https://tex.z-dn.net/?f=y%3D3%5Bx-3%5D%5E2-33)
.
Answer:
Multiply 25 by 32 then add 17:
25 x 32 = 800
800 + 17 = 817
The number is 817
➻ In a group of 40 people, 27 can speak English and 25 can speak Spanish.
➻ The required number of people who can speak both English and Spanish .
<u>Consider</u> ,
➻ A → Set of people who speak English.
➻ B → Set of people who speak Spanish
➻ A∩B → Set of people who can speak both English and Spanish
➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - n (A∩B)
➻ 40 = 52 - n (A∩B)
➻ n (A∩B) = 52 - 40
➻ ∴ n (A∩B) = 12
∴ Required Number of persons who can speak both English and Spanish are <u>12 .</u>
━━━━━━━━━━━━━━━━━━━━━━

➻ n(A∪B) = n(A) + n (B) - n(A∩B)
➻ 40 = 27 + 25 - 12
➻ 40 = 52 - 12
➻ 40 = 40
➻ ∴ L.H.S = R.H.S
━━━━━━━━━━━━━━━━━━━━━━