Add all the item together:
16 + 28 + 12 + 4
=60 total items
Answer:
11-3=8
Step-by-step explanation:
so your answer is going to equal 8
Answer:
For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.
Step-by-step explanation:
The problem states that the monthly cost of a celular plan is modeled by the following function:

In which C(x) is the monthly cost and x is the number of calling minutes.
How many calling minutes are needed for a monthly cost of at least $7?
This can be solved by the following inequality:






For a monthly cost of at least $7, you need to have at least 100 calling minutes.
How many calling minutes are needed for a monthly cost of at most 8:






For a monthly cost of at most $8, you need to have at most 110 calling minutes.
For a monthly cost of at least $7 and at most $8, you can have between 100 and 110 calling minutes.
Answer:
35/4
Step-by-step explanation:
Change -1 2/3 into -5/3. Change -5 1/4 into -21/4.
Multiply -5/3 by -21/4= 105/12
Reduces down to 35/4
Answer:
Distributive property
Step-by-step explanation:
With the distributive property, it is possible to simplify expressions that consist of an expression term such as (a + b) being multiplied by one singular term such as c given as follows
c ×(a + b) = c·a + c·b
Factoring, which is the reverse use of the distributive property enables the difference or the sum of two products, each having a common factor to be the presented as the difference or the sum of two numbers multiplied by the common factor as follows;
2·x - 2·y = 2·(x - y).