Just a random guess 22,275 tell me if it right
Answer: Depends on the elephant ;)
A parabola with an equation, y2 = 4ax has its vertex at the origin and opens to the right.
It's not just the '4' that is important, it's '4a' that matters.
This type of parabola has a directrix at x = -a, and a focus at (a, 0). By writing the equation as it is, the position of the directrix and focus are readily identifiable.
For example, y2 = 2.4x doesn't say a great deal. Re-writing the equation of the parabola as y2 = 4*(0.6)x tells us immediately that the directrix is at x = -0.6 and the focus is at (0.6, 0)
Multiplying both sides by
gives

so that substituting
and hence
gives the linear ODE,

Now multiply both sides by
to get

so that the left side condenses into the derivative of a product.
![\dfrac{\mathrm d}{\mathrm dx}[x^3v]=3x^2](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dx%7D%5Bx%5E3v%5D%3D3x%5E2)
Integrate both sides, then solve for
, then for
:




![\boxed{y=\sqrt[3]{1+\dfrac C{x^3}}}](https://tex.z-dn.net/?f=%5Cboxed%7By%3D%5Csqrt%5B3%5D%7B1%2B%5Cdfrac%20C%7Bx%5E3%7D%7D%7D)