If AB = CD, then 3x+4 is equal to 4x-1
3x + 4 = 4x - 1
Add one to both sides to cancel out.
3x + 5 = 4x
Subtract 3x from both sides to cancel out.
5 = x
Now, substitute the 5 in place of the x in the equation for AB (3x+4)
3(5) + 4
15 + 4
19
Final Answer: B) 19
Answer: -5
Step-by-step explanation: The common difference is the same number we are adding each time to get from one term to the next.
In this sequence, we are adding -5 each time
so our common difference is -5.
i can’t see it can you take a better picture
Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Answer:
- Part A: The price of fuel A is decreasing by 12% per month.
- Part B: Fuel A recorded a greater percentage change in price over the previous month.
Explanation:
<u>Part A:</u>
The function
calculates the price of fuel A each month by multiplying the price of the month before by 0.88.
Month price, f(x)
1 2.27 (0.88) = 1.9976 ≈ 2.00
2 2.27(0.88)² = 1.59808 ≈ 1.60
3 2.27(0.88)³ = 1.46063 ≈ 1.46
Then, the price of fuel A is decreasing.
The percentage per month is (1 - 0.88) × 100 = 12%, i.e. the price decreasing by 12% per month.
<u>Part B.</u>
<u>Table:</u>
m price, g(m)
1 3.44
2 3.30
3 3.17
4 3.04
To find if the function decreases with a constant ration divide each pair con consecutive prices:
- ratio = 3.30 / 3. 44 = 0.959 ≈ 0.96
- ratio = 3.17 / 3.30 = 0.960 ≈ 0.96
- ratio = 3.04 / 3.17 = 0.959 ≈ 0.96
Thus, the price of fuel B is decreasing by (1 - 0.96) × 100 =4%.
Hence, the fuel A recorded a greater percentage change in price over the previous month.