(x+2)(4+y)(5+6)(2+x)(4+0.5x)
combine like terms
(x+2) (4+y) (11) (x+2) (4+.5x)
11(x+2)^2 (4+y)(4+.5x)
distribute
11(x^2 +4x+2) (16+4y+2x+.5xy)
(11x^2+44x+22)(16+4y+2x+.5xy)
5.5 x^3 y + 22 x^3 + 66 x^2 y + 264 x^2 + 198 x y + 792 x + 176 y + 704
The answer to your question should be "<span>Both weight and mass are used equally by scientists"</span>
Answer:
Center: (-2, 4)
Radius: 4
Step-by-step explanation:
To find the centre and radius, we require to identify g , f and c
By comparing the coefficients of 'like terms' in the given equation with the general form.
2g = 4 → g = 2 , 2f = -8 → f = -4 and c = 4 → center=(−g,−f)=(−2,4)
radius = √22+(−4)2−4= √4+16−4=4
Center: (-2, 4)
Radius: 4
Hope This Helps! :)
Answer:
1) 2x+7
2) -3x+11
3) 0.75x-2
4) -2x+0
5) -1.5x+2
6) -4x+16
Step-by-step explanation:
1) y = mx + c
m = 2 when x=1 , y=9
9 = 2(1)+c
c = 7
y = 2x + 7
2) m = -3
When x=4, y= -1
-1 = -3(4) + c
c = -1+12 = 11
y = -3x + 11
3) m = 0.75
When x= -4, y= -5
-5 = 0.75(-4) + c
-5 = -3 + c
c = -2
y = 0.75x - 2
4) m = (y2-y1)/(x2-x1)
m = (2-(-6))/(-1-3) = 8/-4 = -2
y = -2x + c
When x= -1, y= 2
2 = -2(-1) + c
2 = 2 + c
c = 0
y = -2x + 0
5) m = (-10-(-4))/(8-4)
m = (-10+4)/4 = -6/4 = -1.5
y = -1.5x + c
When x= 4, y= -4
-4 = -1.5(4) + c
-4 = -6 + c
c = 2
y = -1.5x + 2
6) m = (-4-4)/(5-3) = -8/2 = -4
When x= 3, y= 4
4 = -4(3) + c
4 = -12 + c
c = 16
y = -4x + 16