1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ad libitum [116K]
3 years ago
14

solve the system of equations and choose the correct answer from the list of options. 2x y = -4 y = 3x 2(-6/5 , -8/5)(-8/5 , -6/

5)(-6/5 , -11/5)(-11/5 , -6/5)
Mathematics
1 answer:
natita [175]3 years ago
6 0
If you would like to solve the system of equations 2x + y = -4 and y = 3x + 2, you can do this using the following steps:

<span>2x + y = -4
y = 3x + 2
</span>_________
<span>2x + y = -4
</span>2x + 3x + 2 = -4
5x = -4 - 2
5x = -6
x = -6/5

y = 3x + 2 = 3 * (<span>-6/5) + 2 = -18/5 + 10/5 = -8/5
</span>
(x, y) = (-6/5, -8/5)

The correct result would be (-6/5, -8/5).
You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
In a random sample of 28​ families, the average weekly food expense was​ $95.60 with a standard deviation of​ $22.50. determine
garik1379 [7]
F. For food stamps for
7 0
3 years ago
Two trucks started toward each other at the same time from towns 500 km apart. One truck traveled at a rate of 65 km per hour wh
ale4655 [162]
They met after (4 hours).
(60+65)*x=500<span />
5 0
3 years ago
Chris has 5 apples and giselle has 8 blueberries what is the ratio from apples to blueberries
Elodia [21]

Answer:

5:8

Step-by-step explanation:

5A to 8 BB

= 5:8

7 0
3 years ago
What is the average rate of change of the function f(x)=2x+4 over the interval -4 ≤ x ≤ 1? Table
Tom [10]

Answer:

2

Step-by-step explanation:

the rate of change is measured as

\frac{f(b) - f(a)}{b-a} in the closed interval [ a, b ]

here [a, b ] = [- 4, 1 ]

f(b) = f(1) = 2 + 4 = 6

f(a) = f(- 4) = - 8 + 4 = - 4

average rate of change = \frac{6-(-4)}{1-(-4)} = \frac{10}{5} = 2

7 0
3 years ago
Other questions:
  • It takes Evan 6 3/4 hours to mow 3 lawns. it takes him 2 1/3 hours to mow Mr. Smiths yard and 1 3/4 hours to mow Ms. Lee's yard.
    14·1 answer
  • a car dealership pays you 5% commission on your first $10,000 on car sales and 8% commission on the sale amount over $10,000 if
    5·1 answer
  • What what is the date of the snow on Cherry Street after three hours?
    5·1 answer
  • Which number is the square of an integer and could also be the cube of another integer?
    11·2 answers
  • Find the coordinates of the other endpoint of the segment, given its midpoint and one endpoint. (Hint: Let (XY) be the unknown e
    8·1 answer
  • the price of a car increases in the ratio 11:8. What is the new price of a car which originally cost 25600?
    14·1 answer
  • Please help I have limited time
    12·1 answer
  • How many different numbers between $\dfrac{1}{1000}$ and $1000$ can be written either as a power of $2$ or as a power of $3$, wh
    11·2 answers
  • Need help and please explain how you got your answer I want to know for next time.
    11·1 answer
  • During track practice crater walks for 200 m each time after he jogs for 800 if he jogged for 7200 m during todays practice how
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!