The system of inequalities are
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) 14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
3) 8 hours babysitting, 7 hours dishwashing
Step-by-step explanation:
The given parameters are;
The amount per hour Janine makes from babysits = $14.50
The amount per hour Janine makes from dishwashing = $9.50
The minimum number of hours Janine can spend dishwashing = 7 hours
The maximum number of hours Janine can spend dishwashing = 10 hours
The maximum number of hours Janine can work each week = 7 hours
The minimum amount she wants to make each week = $140
Let x represent the number of hours Janine spends babysitting and let y represent the number of hours Janine spends dishwashing
1) From the question, we have;
14.5·x + 9.5·y ≥ 140
7 ≤ y ≤ 10
x + y ≤ 15
2) Where
14.5·x + 9.5·y ≥ 140 represents the total amount of money Janine can earn
7 ≤ y ≤ 10 represents the range of values, Janine can spend dishwashing
x + y ≤ 15 represents the total number of hours Janine will like to work each week
Making, y, the subject of the formula of the above inequalities and plotting as functions is given as follows;
y ≥ 140/9.5 - (14.5/9.5)·x
y ≤ 15 - x
3) In order to earn as much money as possible given that the amount Janine earns from babysitting is more than the amount she earns from dishwashing, Janine should spend the least amount of time dishwashing, which is 7 hours, as given, and then spend the remaining 8 hours babysitting to receive $14.5 × 8 + $9.5×7 = $182.5
Question 1: You just do 400 x 14, and the answer is 5,600.
Question 2: You divide 7,600 by 400, and the answer is 19.
Answer:
Part A) The volume of the entire cone is 
Part B) see the explanation
Step-by-step explanation:
Part A) we know that
The volume of a cone is equal to

where
r is the radius of the base of the cone
h is the height of the cone
In this problem triangle ABD is similar to triangle ACE
Remember that If two figures are similar, then the ratio of its corresponding sides is proportional
so

substitute the given values

solve for x

To find out the volume of the entire cone we have


substitute in the formula


Part B) How did you determine the value for x in triangle ACE
In this problem triangle ABD is similar to triangle ACE
If two figures are similar, then the ratio of its corresponding sides is proportional and its corresponding angles are congruent
so

substitute the given values and solve for x