Well they both have integers in it there the same thing except your adding and subtracting. <span>Subtraction is the same thing as adding the opposite of the number. </span>
Answer:
its c because parallel lines are lines that are always the same distance apart all of these are the same distance apart
hoped this helped let me know if it did
Easy just do the negitive numbers and then try to add to the greates number
![\bf ~~~~~~\textit{parabola vertex form} \\\\ \begin{array}{llll} \stackrel{\textit{we'll use this one}}{y=a(x- h)^2+ k}\\\\ x=a(y- k)^2+ h \end{array} \qquad\qquad vertex~~(\stackrel{2}{ h},\stackrel{-1}{ k}) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} h=2\\ k=-1 \end{cases}\implies y=a(x-2)^2-1 \\\\\\ \textit{we also know that } \begin{cases} y=0\\ x=5 \end{cases}\implies 0=a(5-2)^2-1\implies 1=9a \\\\\\ \cfrac{1}{9}=a\qquad therefore\qquad \boxed{y=\cfrac{1}{9}(x-2)^2-1}](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~%5Ctextit%7Bparabola%20vertex%20form%7D%20%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7Bllll%7D%20%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7By%3Da%28x-%20h%29%5E2%2B%20k%7D%5C%5C%5C%5C%20x%3Da%28y-%20k%29%5E2%2B%20h%20%5Cend%7Barray%7D%20%5Cqquad%5Cqquad%20vertex~~%28%5Cstackrel%7B2%7D%7B%20h%7D%2C%5Cstackrel%7B-1%7D%7B%20k%7D%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cbegin%7Bcases%7D%20h%3D2%5C%5C%20k%3D-1%20%5Cend%7Bcases%7D%5Cimplies%20y%3Da%28x-2%29%5E2-1%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Bwe%20also%20know%20that%20%7D%20%5Cbegin%7Bcases%7D%20y%3D0%5C%5C%20x%3D5%20%5Cend%7Bcases%7D%5Cimplies%200%3Da%285-2%29%5E2-1%5Cimplies%201%3D9a%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B1%7D%7B9%7D%3Da%5Cqquad%20therefore%5Cqquad%20%5Cboxed%7By%3D%5Ccfrac%7B1%7D%7B9%7D%28x-2%29%5E2-1%7D)
now, let's expand the squared term to get the standard form of the quadratic.

Answer:
h = 6 cm
Step-by-step explanation:
Atriangle = b×h/2
18cm² = 6cm×h/2
36cm² = 6cm×h
h = 36cm²/6cm
h = 6 cm