Let i = sqrt(-1) which is the conventional notation to set up an imaginary number
The idea is to break up the radicand, aka stuff under the square root, to simplify
sqrt(-8) = sqrt(-1*4*2)
sqrt(-8) = sqrt(-1)*sqrt(4)*sqrt(2)
sqrt(-8) = i*2*sqrt(2)
sqrt(-8) = 2i*sqrt(2)
<h3>Answer is choice A</h3>
Answer:
791.28 in^2
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h
The diameter is 12 so the radius is 1/2 d = 1/2(12) =6
V = 3.14 (6)^2 * 7
791.28 in^2
Answer:
Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Step-by-step explanation:
For this case we know that for a random variable X we have the following parameters given:

Since we can't assume that the distribution of X is the normal then we need to apply the central limit theorem in order to approximate the
with a normal distribution. And we need to check if n>30 since we need a sample size large as possible to assume this.

Based on this rule we can conclude:
a. n = 14 b. n = 19 c. n = 45 d. n = 55 e. n = 110 f. n = 440
Only for c. n = 45 d. n = 55 e. n = 110 f. n = 440 we can ensure that we can apply the normal approximation for the sample mean
for n=14 or n =19 since the sample size is <30 we don't have enough evidence to conclude that the sample mean is normally distributed
Basically means “ to succeed in persuading or influencing someone to do something “