Answer:
-54
Explanation:
First we need to use the distributive property on 7(x+5), so do 7×x + 7×5. Simplify that and you get 7x+35.
Subtract 35 from both sides and you get 7x= -63. Divide both sides by 7 and you get x= -9.
Now we can substitute -9 for x, so do 6×-9 and you get -54.
Hope this helps :)
If
![\mathbf A](https://tex.z-dn.net/?f=%5Cmathbf%20A)
is invertible, then we can simply choose
![\mathbf B=\mathbf A^{-1}](https://tex.z-dn.net/?f=%5Cmathbf%20B%3D%5Cmathbf%20A%5E%7B-1%7D)
because for any invertible matrix
![\mathbf X](https://tex.z-dn.net/?f=%5Cmathbf%20X)
by definition we must have
![\mathbf{XX}^{-1}=\mathbf X^{-1}\mathbf X=\mathbf I](https://tex.z-dn.net/?f=%5Cmathbf%7BXX%7D%5E%7B-1%7D%3D%5Cmathbf%20X%5E%7B-1%7D%5Cmathbf%20X%3D%5Cmathbf%20I)
.
We have
![\det\mathbf A\neq0](https://tex.z-dn.net/?f=%5Cdet%5Cmathbf%20A%5Cneq0)
, as
![\det\mathbf A=\begin{vmatrix}1&7\\0&1\end{vmatrix}=1\times1-0\times7=1](https://tex.z-dn.net/?f=%5Cdet%5Cmathbf%20A%3D%5Cbegin%7Bvmatrix%7D1%267%5C%5C0%261%5Cend%7Bvmatrix%7D%3D1%5Ctimes1-0%5Ctimes7%3D1)
which means
![\mathbf A](https://tex.z-dn.net/?f=%5Cmathbf%20A)
is non-singular and has an inverse. The inverse itself would be
Answer:
Width=5
Mark brainliest plzzz
Step-by-step explanation:
8x5x3=120
8x5=40
40x3=120
The value of constant c for which the function k(x) is continuous is zero.
<h3>What is the limit of a function?</h3>
The limit of a function at a point k in its field is the value that the function approaches as its parameter approaches k.
To determine the value of constant c for which the function of k(x) is continuous, we take the limit of the parameter as follows:
![\mathbf{ \lim_{x \to 0^-} k(x) = \lim_{x \to 0^+} k(x) = 0 }](https://tex.z-dn.net/?f=%5Cmathbf%7B%20%5Clim_%7Bx%20%5Cto%200%5E-%7D%20k%28x%29%20%3D%20%20%5Clim_%7Bx%20%5Cto%200%5E%2B%7D%20k%28x%29%20%3D%20%200%20%7D)
![\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}= c }](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cimplies%20%20%5Clim_%7Bx%20%5Cto%200%20%7D%20%5C%20%5C%20%20%5Cdfrac%7Bsec%20%5C%20x%20-%201%7D%7Bx%7D%3D%20c%20%7D)
Provided that:
![\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}= \dfrac{0}{0} \ (form) }](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cimplies%20%20%5Clim_%7Bx%20%5Cto%200%20%7D%20%5C%20%5C%20%20%5Cdfrac%7Bsec%20%5C%20x%20-%201%7D%7Bx%7D%3D%20%5Cdfrac%7B0%7D%7B0%7D%20%5C%20%28form%29%20%7D)
Using l'Hospital's rule:
![\mathbf{\implies \lim_{x \to 0} \ \ \dfrac{\dfrac{d}{dx}(sec \ x - 1)}{\dfrac{d}{dx}(x)}= \lim_{x \to 0} sec \ x \ tan \ x = 0}](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cimplies%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5C%20%5C%20%20%5Cdfrac%7B%5Cdfrac%7Bd%7D%7Bdx%7D%28sec%20%5C%20x%20-%201%29%7D%7B%5Cdfrac%7Bd%7D%7Bdx%7D%28x%29%7D%3D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%20%20sec%20%5C%20x%20%20%5C%20tan%20%5C%20x%20%3D%200%7D)
Therefore:
![\mathbf{\implies \lim_{x \to 0 } \ \ \dfrac{sec \ x - 1}{x}=0 }](https://tex.z-dn.net/?f=%5Cmathbf%7B%5Cimplies%20%20%5Clim_%7Bx%20%5Cto%200%20%7D%20%5C%20%5C%20%20%5Cdfrac%7Bsec%20%5C%20x%20-%201%7D%7Bx%7D%3D0%20%7D)
Hence; c = 0
Learn more about the limit of a function x here:
brainly.com/question/8131777
#SPJ1
☆What is the prime factorization of 108?
To find the prime factorization, first divide 108 by 2.
![108 \div 2 = 54](https://tex.z-dn.net/?f=%20108%20%5Cdiv%202%20%3D%2054%20)
You have 2 numbers: 54 and 2. 2 is a prime number and 54 isn't. Divide 54 by 2 until every factor of 54 is prime.
★ Prime number collection: 2
![54 \div 2 = 27](https://tex.z-dn.net/?f=%2054%20%5Cdiv%202%20%3D%2027%20)
Add 2 to the "prime number collection". Divide 27 by factors until every factor you find is prime.
★ Prime number collection: 2, 2
![27 \div 3 = 9](https://tex.z-dn.net/?f=%2027%20%5Cdiv%203%20%3D%209%20)
Add 3 to the "prime number collection". Divide 9 by a factor of it to find more prime numbers.
★ Prime number collection: 2, 2, 3
![9 \div 3 = 3](https://tex.z-dn.net/?f=%209%20%5Cdiv%203%20%3D%203%20)
The two 3's are prime. No more dividing! Add those to the "prime number collection".
★ Prime number collection: 2, 2, 3, 3, 3
Multiply all the numbers in your "prime number collection".
![2 \times 2 \times 3 \times 3 \times 3](https://tex.z-dn.net/?f=%202%20%5Ctimes%202%20%5Ctimes%203%20%5Ctimes%203%20%5Ctimes%203%20)