1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kolbaska11 [484]
2 years ago
7

F(x) = 6x – 12 ; shifts 4 units down.

Mathematics
1 answer:
DIA [1.3K]2 years ago
6 0

Answer:

f(x) = 6x-16

Step-by-step explanation:

Since the function is shifting 4 units down, it will be moving down the y axis, meaning the y-intercept will decrease by 4.

y=mx+b is the formula for the straight line, where b is the y-intercept. The y-intercept in this function is -12, so we would just subtract -4 from -12 to get our answer.

-12-4=-16

Make sure to leave the coefficient of x

Therefore, f(x) = 6x-16

You might be interested in
S=hp+2b solve for h i forgot the word to decribe how i forgot to do tis
irga5000 [103]

To solve for h, you need to isolate/get h by itself in the equation:

s = hp + 2b     Subtract 2b on both sides

s - 2b = hp + 2b - 2b

s - 2b = hp           Divide p on both sides to get h by itself

\frac{s-2b}{p} =\frac{hp}{p}

\frac{s-2b}{p} =h

5 0
3 years ago
Find the inequalitie for d thank youuu <br><br><br> -7d+8&gt;29
shutvik [7]

Answer:

d<3

Step-by-step explanation:

-7d+8>29

First lets remove the inequality  for know

-7d+8=29

then remember to re add the inequality to the equation

-7d>21

since you divide by negative you switch

d<3

that is your answer

3 0
3 years ago
Ivan used coordinate geometry to prove that quadrilateral EFGH is a square.
Thepotemich [5.8K]

Answer:

this is geometry?

Step-by-step explanation:

5 0
3 years ago
I need help quick!! Plz I’m timed and it’s almost up!!
Pepsi [2]

Answer:

A

Step-by-step explanation:

4 0
2 years ago
<img src="https://tex.z-dn.net/?f=%5Cleft%20%5C%7B%20%7B%7Bx%2By%3D1%7D%20%5Catop%20%7Bx-2y%3D4%7D%7D%20%5Cright.%20%5C%5C%5Clef
brilliants [131]

Answer:

<em>(a) x=2, y=-1</em>

<em>(b)  x=2, y=2</em>

<em>(c)</em> \displaystyle x=\frac{5}{2}, y=\frac{5}{4}

<em>(d) x=-2, y=-7</em>

Step-by-step explanation:

<u>Cramer's Rule</u>

It's a predetermined sequence of steps to solve a system of equations. It's a preferred technique to be implemented in automatic digital solutions because it's easy to structure and generalize.

It uses the concept of determinants, as explained below. Suppose we have a 2x2 system of equations like:

\displaystyle \left \{ {{ax+by=p} \atop {cx+dy=q}} \right.

We call the determinant of the system

\Delta=\begin{vmatrix}a &b \\c  &d \end{vmatrix}

We also define:

\Delta_x=\begin{vmatrix}p &b \\q  &d \end{vmatrix}

And

\Delta_y=\begin{vmatrix}a &p \\c  &q \end{vmatrix}

The solution for x and y is

\displaystyle x=\frac{\Delta_x}{\Delta}

\displaystyle y=\frac{\Delta_y}{\Delta}

(a) The system to solve is

\displaystyle \left \{ {{x+y=1} \atop {x-2y=4}} \right.

Calculating:

\Delta=\begin{vmatrix}1 &1 \\1  &-2 \end{vmatrix}=-2-1=-3

\Delta_x=\begin{vmatrix}1 &1 \\4  &-2 \end{vmatrix}=-2-4=-6

\Delta_y=\begin{vmatrix}1 &1 \\1  &4 \end{vmatrix}=4-3=3

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{3}{-3}=-1

The solution is x=2, y=-1

(b) The system to solve is

\displaystyle \left \{ {{4x-y=6} \atop {x-y=0}} \right.

Calculating:

\Delta=\begin{vmatrix}4 &-1 \\1  &-1 \end{vmatrix}=-4+1=-3

\Delta_x=\begin{vmatrix}6 &-1 \\0  &-1 \end{vmatrix}=-6-0=-6

\Delta_y=\begin{vmatrix}4 &6 \\1  &0 \end{vmatrix}=0-6=-6

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-6}{-3}=2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-6}{-3}=2

The solution is x=2, y=2

(c) The system to solve is

\displaystyle \left \{ {{-x+2y=0} \atop {x+2y=5}} \right.

Calculating:

\Delta=\begin{vmatrix}-1 &2 \\1  &2 \end{vmatrix}=-2-2=-4

\Delta_x=\begin{vmatrix}0 &2 \\5  &2 \end{vmatrix}=0-10=-10

\Delta_y=\begin{vmatrix}-1 &0 \\1  &5 \end{vmatrix}=-5-0=-5

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{-10}{-4}=\frac{5}{2}

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{-5}{-4}=\frac{5}{4}

The solution is

\displaystyle x=\frac{5}{2}, y=\frac{5}{4}

(d) The system to solve is

\displaystyle \left \{ {{6x-y=-5} \atop {4x-2y=6}} \right.

Calculating:

\Delta=\begin{vmatrix}6 &-1 \\4  &-2 \end{vmatrix}=-12+4=-8

\Delta_x=\begin{vmatrix}-5 &-1 \\6  &-2 \end{vmatrix}=10+6=16

\Delta_y=\begin{vmatrix}6 &-5 \\4  &6 \end{vmatrix}=36+20=56

\displaystyle x=\frac{\Delta_x}{\Delta}=\frac{16}{-8}=-2

\displaystyle y=\frac{\Delta_y}{\Delta}=\frac{56}{-8}=-7

The solution is x=-2, y=-7

4 0
3 years ago
Other questions:
  • Write all the numbers that round to 50
    10·1 answer
  • 2⋅(36⋅3−5) . evaluate
    8·2 answers
  • What is the equation of a line that contains the points (2,-2) and (0, -2)?
    8·2 answers
  • Can someone plz answer this
    13·2 answers
  • Find ( f - g ) (x) f (x) = 2x^2 - 2 and g (x) = 4x + 1
    5·2 answers
  • Quick.!! Il pick the brainliest.!! Tha value of x is.?
    15·2 answers
  • 4<br> 3<br> A<br> 1<br> %<br> 2<br> What is the equation of line k?
    6·1 answer
  • What is m∠1? help me please
    6·2 answers
  • 4x + 3z for x=7 and z=2​
    11·2 answers
  • A line passes through the point (-4,9) and has a slope of -5/2 what is the answer.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!