Answer:
DNA ligase
Explanation:
<em>The biochemist must have left out DNA ligase enzyme.</em>
<u>The DNA ligase enzyme is able to catalyze the formation of phosphodiester bonds and as such, capable of joining strands of DNA together to form a single strand.</u>
The numerous DNA segments of a few nucleotides long observed by the biochemist must have been the replicated product of the lagging DNA strand. The lagging strand is replicated discontinuously in short strands because the DNA polymerase enzyme can only elongate primers in 5' to 3' direction. The short segments are known as Okazaki segments and are usually joined together to form a whole strand by the DNA ligase enzyme.
Hence, the missing component is the DNA ligase.
We use Chargaff's rule to get the answer.
[A] + [G] = [C]+ [T].
[A] + [G] + [C] + [T] = 100%
Where is A is Adenine, G is Gaunine, T is Thymine and C is Cytosine.
In DNA, Adenine always pairs with Thymine, and Guanine always pairs with Cytosine.
Therefore if Thymine is 35%, then Adenine will also be 35% to make 70% in total.
The remaining percentage will be 100% - 70% = 30%.
The 30% will be shared equally among Cytosine and Guanine, at 15% each. Therefore Cytosine will be 15%
The answer is d. pheromones.
Hypothesis: If Plant Food X is used on a tomato plant, then production rate will increase.
experiment: Gather 2 tomato plants of the same height and age. Make two groups, a control group (a tomato plant without use of fertilizer) and an experimental group (a tomato plant with using Plant Food X).
For one week, give each plant the same amount of water, humidity, sunlight, and air temperature. after a week measure the height and number of tomatoes produced. gather the info in a table and compare to hypothesis after one week.
The answer 4 the above question sounds like a vitamin D deficiency.