Given that th<span>e coordinates of the vertices of △DEF are D(2, −1) , E(7, −1) , and F(2, −3) and the coordinates of the vertices of △D′E′F′ are D′(0, −1) , E′(−5, −1) , and F′(0, −3) .
Notice that the y-coordinates of the pre-image and that of the image are the same, which means that there is a reflection across the y-axis.
A refrection across the y-axis results in the change in sign of the x-coordinates of the pre-image and the image while the y-coordinate of the image remains the same as that of the pre-image.
A refrection across the y-axis of </span>△DEF with vertices D(2, −1) , E(7, −1) , and F(2, −3)
will result in and image with vertices (-2, -1), (-7, -1) and (-2, -3) respectively.
Notice that the x-coordinate of the final image △D′E′F′ with vertices <span>D′(0, −1) , E′(−5, −1) , and F′(0, −3) is 2 units greater than the vertices of the result of recting the pre-image across the y-axis.
This means that the result of refrecting the pre-image was shifted two places to the right.
Therefore, </span>the sequence of transformations that maps △DEF to △D′E′F′ are reflection across the y-axis and translation 2 units right.
This is an absolute value function which creates a V for its graph. Since the absolute value is on y, the function is rotated to the right or sideways.
This means only the x values of 0 and greater are used in the function. Since the domain is the set of all x values then it is x≥0.
This also means that all y values are used on the y-axis. There is no restriction on the y values. Since the range is the set of all y values then it is all real numbers.