Given that th<span>e coordinates of the vertices of △DEF are D(2, −1) , E(7, −1) , and F(2, −3) and the coordinates of the vertices of △D′E′F′ are D′(0, −1) , E′(−5, −1) , and F′(0, −3) .
Notice that the y-coordinates of the pre-image and that of the image are the same, which means that there is a reflection across the y-axis.
A refrection across the y-axis results in the change in sign of the x-coordinates of the pre-image and the image while the y-coordinate of the image remains the same as that of the pre-image.
A refrection across the y-axis of </span>△DEF with vertices D(2, −1) , E(7, −1) , and F(2, −3)
will result in and image with vertices (-2, -1), (-7, -1) and (-2, -3) respectively.
Notice that the x-coordinate of the final image △D′E′F′ with vertices <span>D′(0, −1) , E′(−5, −1) , and F′(0, −3) is 2 units greater than the vertices of the result of recting the pre-image across the y-axis.
This means that the result of refrecting the pre-image was shifted two places to the right.
Therefore, </span>the sequence of transformations that maps △DEF to △D′E′F′ are reflection across the y-axis and translation 2 units right.
Z- score is a statistical tool that is used to determine the probability of finding a number or a value under a normal distribution plot. A normal distribution assumes that the mean is equal to zero and that the standard deviation is equal to 1. Using the z-score table, we can find the probability either on the right side or the left side. Using the table hence, we find the probability to the left of the value. The probability that is equivalent to the unknown z should be equal to 0.5 + (0.27/2) = 0.635. 0.5 comes from the assumption that the area under the curve on each side is 50% of the total. The equivalent z score is equal to z = 0.345.