Answer:
b. Forward or reverse primers
Explanation:
Sanger sequencing is a technique of DNA sequencing based on the extension of DNA fragments with variable sizes terminated with dideoxynucleotides at the 3′ end. This technique was developed by Frederick Sanger in 1977. In Sanger sequencing, a short primer is added in order to bind by complementarity to the target DNA region of interest. Subsequently, a DNA polymerase adds nucleotides (A, T, C and G) in the 5'-3' direction. Finally, the extension of the DNA strand is stopped by adding dideoxynucleotides, which are nucleotide analogs (i.e., modified nucleotides) that act as DNA synthesis terminators.
Answer:
This question lacks options, however, it can be answered based on general understanding of the topic
The answer is SUBSTITUTION MUTATION
Explanation:
A mutation is any change that occurs in the nucleotide sequence of a gene. Mutation can be of different types depending on how it occurs. One type of mutation is SUBSTITUTION MUTATION, which is a mutation in which one or more nucleotide base is replaced by another in the sequence.
Nucleotide bases are read in a group of three called CODON. Each of these codons specify amino acid. Hence, if the nucleotide base sequence is altered during mutation, the amino acid sequence is altered likewise. In this case where the original amino acid sequence is: Met-Ala-Gln-Arg-Glu-Leu, the mutation affected the nucleotide bases coding for Arginine (Arg), hence changing it to Glycine (Gly).
This means that a base substitution mutation occured, replacing the amino acid Arginine with Glycine in the mutated sequence.
It's c natural resources because they can never run out