Question:
1. The females worked less than the males, and the female median is close to Q1.
2. There is a high data value that causes the data set to be asymmetrical for the males.
3. There are significant outliers at the high ends of both the males and the females.
4. Both graphs have the required quartiles.
Answer:
The correct option is;
1. The females worked less than the males, and the female median is close to Q1
Step-by-step explanation:
Based on the given data, we have;
For males
Minimum = 0
Q1 = 1
Median or Q2 = 20
Q3 = 25
Maximum = 50
For females;
Minimum = 0
Q1 = 5
Median or Q2 = 6
Q3 = 10
Maximum = 18
Therefore, the values of data that affect the statistical measures of spread and center are that
The females worked less than the males as such the statistical data for the females have less variability than the males in terms of interquartile range
Also the female median is very close to Q1, therefore it affects the definition of a measure of center.
Answer:
<4 = 88
<3 = 92
Step-by-step explanation:
The sum of the angles of a triangle is 180
<4 + 45+ 47 = 180
<4 + 92 = 180
< 4 = 180-92
<4 = 88
We know the <3 and <4 form a line
<3 + <4 = 180
<3 + 88 = 180
< 3 = 180-88
<3 = 92
Answer:
Aaron must obtain a 96 or higher to achieve the desired score to earn an A in the class.
Step-by-step explanation:
Given that the average of Aaron's three test scores must be at least 93 to earn an A in the class, and Aaron scored 89 on the first test and 94 on the second test, to determine what scores can Aaron get on his third test to guarantee an A in the class, knowing that the highest possible score is 100, the following inequality must be written:
93 x 3 = 279
89 + 94 + S = 279
S = 279 - 89 - 94
S = 96
Thus, at a minimum, Aaron must obtain a 96 to achieve the desired score to earn an A in the class.
Answer:
the students that brought a lunch box is 28
Step-by-step explanation:
The computation of the students that brought a lunch box is shown below:
= Entire school students × students that carry a lunch box ÷ entering students
= 84 students × 8 ÷ 24 students
= 28 students
Hence, the students that brought a lunch box is 28
Answer:
16
Step-by-step explanation:
5 × 320 ÷ 100 = 16
5 × 320 = 1,600
1,600 ÷ 100 = 16
16 es tu repuesta