1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
3 years ago
5

There are 85 children in a school

Mathematics
1 answer:
Radda [10]3 years ago
7 0

Answer:

85/2=42.5~43

42 or 43 boys

You might be interested in
3. The stem-and-leaf plot shows the cost of lamps at a department store.
77julia77 [94]

Answer:

(a) What is the median cost?
12-78

(b) Is there a mode? If so, what is it?

No there isn't

(c) What is the difference between the most expensive and least expensive lamps?

12,75-78

(d) How many lamps cost more than $20 but less than $40?

5

(e) What is the ratio of lamps that cost less than $40 to lamps that cost more than $40? Write the ratio in the simplest form.

{for less} - (12,49)   {for more} - (49,78)

Step-by-step explanation:

hope I helped if it's wrong tell me

~Ally

3 0
1 year ago
How long is a high school football game on average? I wanted to know about how long a high school football game lasts from start
Oksi-84 [34.3K]
I think its around the same time as an average NFL game so probably 2 maby 3 hours long

3 0
3 years ago
A coach is assessing the correlation between the number of hours spent practicing and the average number of points scored in a g
cricket20 [7]

Answer:

a) r=\frac{9(396)-(18)(153)}{\sqrt{[9(51) -(18)^2][9(3141) -(153)^2]}}=1  

We have a perfect linear relationship between the two variables

b) m=\frac{90}{15}=6  

Nowe we can find the means for x and y like this:  

\bar x= \frac{\sum x_i}{n}=\frac{18}{9}=2  

\bar y= \frac{\sum y_i}{n}=\frac{153}{9}=17  

And we can find the intercept using this:  

b=\bar y -m \bar x=17-(6*2)=5  

So the line would be given by:  

y=6 x +5  

c) For this case the slope indicates that for each increase of the number of hours in 1 unit we have an expected increase in the score about 6 units.

And the intercept 5 represent the minimum score expected for any game

Step-by-step explanation:

We have the following data:

Number of hours spent practicing (x) 0 0.5 1 1.5 2 2.5 3 3.5 4

Score in the game (y) 5 8 11 14 17 20 23 26 29

Part a

The correlation coefficient is given:

r=\frac{n(\sum xy)-(\sum x)(\sum y)}{\sqrt{[n\sum x^2 -(\sum x)^2][n\sum y^2 -(\sum y)^2]}}  

For our case we have this:

n=9 \sum x = 18, \sum y = 153, \sum xy = 396, \sum x^2 =51, \sum y^2 =3141  

r=\frac{9(396)-(18)(153)}{\sqrt{[9(51) -(18)^2][9(3141) -(153)^2]}}=1  

We have a perfect linear relationship between the two variables

Part b

m=\frac{S_{xy}}{S_{xx}}  

Where:  

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n}  

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}  

With these we can find the sums:  

S_{xx}=\sum_{i=1}^n x^2_i -\frac{(\sum_{i=1}^n x_i)^2}{n}=51-\frac{18^2}{9}=15  

S_{xy}=\sum_{i=1}^n x_i y_i -\frac{(\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i){n}}=396-\frac{18*153}{9}=90  

And the slope would be:  

m=\frac{90}{15}=6  

Nowe we can find the means for x and y like this:  

\bar x= \frac{\sum x_i}{n}=\frac{18}{9}=2  

\bar y= \frac{\sum y_i}{n}=\frac{153}{9}=17  

And we can find the intercept using this:  

b=\bar y -m \bar x=17-(6*2)=5  

So the line would be given by:  

y=6 x +5  

Part c

For this case the slope indicates that for each increase of the number of hours in 1 unit we have an expected increase in the score about 6 units.

And the intercept 5 represent the minimum score expected for any game

5 0
3 years ago
Find the remainder when f(x)=x3−4x2−6x−3 f ( x ) = x 3 − 4 x 2 − 6 x − 3 is divided by x+1
loris [4]

Answer:

The remainder is -2.

Step-by-step explanation:

According to the Polynomial Remainder Theorem, if we divide a polynomial P(x) by a binomial (<em>x</em> - <em>a</em>), then the remainder of the operation will be given by P(a).

Our polynomial is:

P(x) = x^3-4x^2-6x-3

And we want to find the remainder when it's divided by the binomial:

x+1

We can rewrite our divisor as (<em>x</em> - (-1)). Hence, <em>a</em> = -1.

Then by the PRT, the remainder will be:

\displaystyle\begin{aligned}  R &= P(-1)\\ &=(-1)^3-4(-1)^2-6(-1)-3 \\ &= (-1)-4(1)+(6)-3 \\ &= -2 \end{aligned}

The remainder is -2.

5 0
2 years ago
Ayuda por favor
sergeinik [125]

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

<h3>¿Cómo determinar la medida de un lado de un triángulo desconocido?</h3>

En este problema tenemos un sistema formado por dos triángulos <em>similares</em>, la semejanza entre los dos triángulos se debe a la colinealidad entre los segmentos de línea AP' (triángulo <em>pequeño</em>) y AP'' (triángulo <em>grande</em>), así como de los lados AM y AB, así como los lados AN y AC, así como los <em>mismos</em> ángulos en la <em>misma</em> distribución. (Semejanza Lado - Ángulo - Lado)

En consecuencia, obtenemos las siguientes proporciones:

AP'/AP'' = MN/BC = 1/2     (1)

Finalmente, la proporción entre el triángulo AMN y el cuadrilátero BMNC es:

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)}{\frac{1}{2}\cdot (2\cdot a) \cdot  h - \frac{1}{2}\cdot a \cdot \left(\frac{1}{2}\cdot h \right)} = \frac{\frac{1}{4}\cdot a\cdot h }{a\cdot h - \frac{1}{4}\cdot a \cdot h }

\frac{AMN}{ABC - AMN} = \frac{\frac{1}{4} }{\frac{3}{4} } = \frac{1}{3}

A partir de la definición de razón y la teoría de semejanza entre triángulos, la razón del área del triángulo AMN y el área del cuadrilátero BMNC es equivalente a 1/3.

Para aprender sobre triángulos semejantes: brainly.com/question/21730013

#SPJ1

3 0
2 years ago
Other questions:
  • The water company that serves St. George Island charges a base facility fee of $32.00 each month. In addition, they charge $6.53
    14·1 answer
  • How do i solve this for x
    9·1 answer
  • A number b decreased by 14, how would you write this in a equation ?
    15·1 answer
  • ABC has A(-3,6),B(2,1),and C(9,5) as its vertices the length of side AB is units . The length of side BC is ?units . The length
    7·1 answer
  • Find the measure of the line segment indicated. Assume that lines which appear tangent are tangent.
    5·1 answer
  • If y equals 14, what does x equal in the following equation ?
    9·1 answer
  • 100 POINTS!
    6·1 answer
  • Pls help me guys I forgot how to do this :((((((
    5·2 answers
  • A, B &amp; C form a triangle where Z BAC = 90°.
    13·1 answer
  • Marc edits a video he took in class. He cuts 9 seconds from the start. Then he cuts 3 seconds from the end. The clip is 5 second
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!