The general eaquation of a parabola in terms of its vertex is:
y = a(x - h)^2 + k
where the vertex point is (h, k)
therefore, an equation of a parabola with vertex (1, -2) is:
y = 5(x - 1)^2 - 2
the answer for this is:
subtract 7 from 4 to get -3
you then have 2^-3
remove the negative exponent by rewriting as 1/(2^3)
Answer: ik nothing of basketball sorry
QUESTION 1: In these type of question, the easiest way to get the answer is try to plug in the x and y values from the options given in the equation given, So in the first question all the choice except C are more then 14 if you plug in x and y's, for eg, if you plug in x = 3 and y = 2 , you get (3+3)2 = 14 6 x 2 = 14 12 is not equal to 14, so this eliminates this choice but if you chose C you get, (11+3)1 = 14 14 = 14 so this makes C the solution for first question and for the second question do the same thing, and the answer will be D. Hope this helps
QUESTION 2: 5xy + 9 = 44
5xy = 35
xy = 7
solution pairs are:
C. (1, 7) and (7, 1)
not mentioned: (-1.-7) and (-7, -1)
Hope this helps
Plzz don't forget to rate and thanks me
Answer:
unreadable score = 35
Step-by-step explanation:
We are trying to find the score of one exam that is no longer readable, let's give that score the name "x". we can also give the addition of the rest of 9 readable s scores the letter "R".
There are two things we know, and for which we are going to create equations containing the unknowns "x", and "R":
1) The mean score of ALL exams (including the unreadable one) is 80
so the equation to represent this statement is:
mean of ALL exams = 80
By writing the mean of ALL scores (as the total of all scores added including "x") we can re-write the equation as:

since the mean is the addition of all values divided the total number of exams.
in a similar way we can write what the mean of just the readable exams is:
(notice that this time we don't include the grade x in the addition, and we divide by 9 instead of 10 because only 9 exams are being considered for this mean.
Based on the equation above, we can find what "R" is by multiplying both sides by 9:

Therefore we can now use this value of R in the very first equation we created, and solve for "x":
