Answer:
Step-by-step explanation:
11.04 = 10(1.02)^n
1.104 = 1.02^n
ln 1.104 = ln 1.02^n
ln 1.104 = n ln 1.02
n = ln 1.104/ ln 1.02
n = 4.99630409516
4.99 can be rounded to 5.
So a reasonable domain would be 0 ≤ x < 5
PART B)
f(0) = 10(1.02)^0
f(0) = 10(1)
f(0) = 10
The y-intercept represents the height of the plant when they began the experiment.
f(1) = 10(1.02)^1
f(1) = 10(1.02)
f(1) = 10.2
(1, 10.2)
f(5) = 10(1.02)^5
f(5) = 10(1.1040808)
f(5) = 11.040808
f(1)=10(1.02)^1
f(1)=10.2
Average rate= (fn2-fn1)/(n2-n1)
=11.04-10.2/(5-1)
=0.22
the average rate of change of the function f(n) from n = 1 to n = 5 is 0.22.
Answer: 3
/4
Step-by-step explanation:
Exact Form: 3
/4
Decimal Form:
0.75
Answer:
U it is DG if jug chuchi DG u want u back to the u and composition
Answer:
4y = 6x + 40
Step-by-step explanation:
The general equation of a straight line is y = mx + b
m is the slope and b is the y-intercept
let us write both equations in this form;
we have this as;
6y = -4x + 1
y = -4x/6 + 1/6
and;
2x + 3y = 18
3y = -2x + 18
y = -2x/3 + 6
So firstly we want to find an equation that is perpendicular to the first
When two lines are perpendicular, their slopes has a product of -1
The slope of the first line is -4/6
let the slope of the line we want be m
As per they are perpendicular;
-4/6 * m = -1
-4m/6 = -1
-4m = -6
m = 6/4
So now, we want the y-intercept greater than that of the second equation which is a y-intercept of 6
we can choose 10
and we have the equation as:
y = 6x/4 + 10
multiply through by 4
4y = 6x + 40